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Abstract—Multi-source clustering is common data mining task
the aim of which is to use several clustering algorithms to analyze
different aspects of the same data. Well known applications of
multi-source clustering include horizontal collaborative clustering
and multi-view clustering, where several algorithms combine
their strengths by exchanging information about their finding on
local structures with a goal of mutual improvement. However,
many of these proposed algorithms and statistical models lack
the capability to detect weak collaborations that may prove
detrimental to the global clustering process.

In this article, we propose a weighing optimization method
that will help detecting which algorithms should exchange their
information based on the diversity between the different algo-
rithms’ solutions.

I. INTRODUCTION

Data Clustering is a fundamental task in the process of
knowledge extraction from databases that aims to discover
intrinsic structures in a set of objects by forming clusters
that share similar features. This task is more difficult than
supervised classification in the sense that in clustering the
number of clusters to be found is generally unknown and
that it is difficult to rate the quality of a clustering result.
Recent data sets are even more challenging for traditional
clustering algorithms: They present different types of features
for the same data elements, very large data sets, distributed
data sets, etc. This increased complexity in an already hard
problem makes it difficult for a single clustering algorithm
to give competitive results with a high degree of confidence.
However, very much like in the real world, such problems
can be tackled more easily by splitting the tasks between
several algorithms that would work together with the goal
of achieving more reliable results. One of the idea behind
multi-source clustering is that unsupervised learning being a
difficult task, we can’t say much about the quality of a solution
found by a single algorithm. However, if several algorithms
find similar solutions, then there is a good chance that they
found a structure that makes sense.

Collaborative clustering methods [1], [2], [3], [4] and multi-
view clustering methods [5], [6], [7] are two close families

of frameworks that effectively enable several clustering al-
gorithms to work on different views of the same data sets,
possibly with redundant features. While they were originally
thought for different purposes, horizontal collaborative clus-
tering and multi-view clustering are in fact equivalent in most
cases. The main differences between the two are the following:
• Multi-view clustering usually applies to several instances

of the same algorithm working on different views of the
same data, while horizontal collaborative clustering can
allow different types of algorithms to work together [8],
[4].

• Collaborative clustering original application was dis-
tributed data sets in cloud environments [1], [9] and
had originally the constraint that all collaborators should
search for the same number of clusters. Its applications
were later extended to multi-view clustering, muli-scale
clustering and transfer learning [3], [10]. On the other
hand, multi-view clustering comes from a statistical back-
ground of several algorithms analyzing different views of
the same data with different attributes [11], [12].

In this article, we will assume that multi-view clustering can
be seen as a sub-case of horizontal collaborative clustering and
therefore that the optimal conditions to achieve good results
are the same for both families of algorithms.

Collaborative clustering usually follows a 2-step process
where first all algorithm work on their own to build initial
solution, and then they exchange their information to improve
each other results. These two steps are sometimes followed by
an ensemble learning step which aims at reaching a consensus
with the final results after collaboration, see Figure 1. We will
not address the consensus step in this work.

Within this context, the aim of this article is to propose
a weighting method that will determine how the different
algorithms should influence each other in either framework
with the goal of maximizing the quality of the results. To do so,
we use the fact that most of these methods rely on optimizing
a log-likelihood the form of which is given in Equation (1)



Fig. 1. Example of a collaboration or multi-view scheme

[5], [13], [2], where J is the number of algorithms in the
system, L(Xi, Si) is the local log-likelihood of the ith algo-
rithm based on the local information, ∆(Si, Sj) a difference
function between to solution, and τj,i a weight determining the
influence of algorithm j over algorithm i. Depending on the
collaborative algorithm, common ∆(Si, Sj) functions include
the Kullback-Leibler divergence, various a posteriori entropy
measures between the solutions and diversity indexes.

L(X,S) =

J∑
i=1

L(Xi, Si)−
∑
j 6=i

τj,i ·∆(Si, Sj)

 (1)

The model that we introduce in this article relies on
weighting the influence of each algorithm (the τj,i) using a
stability and diversity-based criterion obtained by optimizing
the global likelihood function of the collaborative system
under the Karush-Kuhn-Tucker conditions. We then interpret
the result of this optimization to draw a broader conclusion
on the role of cluster diversity in the context of collaborative
clustering and the optimal conditions for good collaborations.

The remainder of this article is organized as follows:
In section 2 we introduce the formalism, model and algorithm
that we use for our collaborative framework. In section 3,
we present our optimization method for the collaborative
term, the resulting optimal weights, and the interpretation
that we can make from these results. Section 4 features
some experimental results. Finally, this article ends with a
conclusion and perspective on future works.

II. A FRAMEWORK FOR HORIZONTAL COLLABORATION

A. Formalism

In multi-source clustering we consider a group of algorithms
that are working on the same data elements, albeit possibly
with a different view point. To this end, let us consider
X = {x1, ..., xN}, xn ∈ Rd a data set containing N elements,
each of them with d real number features. We have J clus-
tering algorithms A = {A1, ...,AJ} working on this data set.

Each clustering algorithm will have its own parameters Θj to
describe either the clusters or its model, and will produce its
own solution Si made of Ki clusters, based on the features
of the data set it has access to Xi ⊆ X . The solutions Si are
computed for the data X using the parameters Θi. In the case
of hard clustering Si is a vector of size N , for fuzzy clustering
it is a matrix of size N ×Ki.

The partitions produced by the algorithms can be either
fuzzy partitions or hard ones. The solutions Si output by
the algorithms are therefore two-dimensional matrices of size
N×Ki where each element sin(c) expresses the responsibility
given by algorithm Ai to a cluster c for the data element
xn. In soft clustering we have sin(c) ∈ (0, 1), while in hard
partitioning sin(c) ∈ {0, 1} and sin(c) = 1 for only one cluster
c for each data element xn. In this last case, we will use sin = c
to express the fact that data element xn has been (entirely)
allocated to cluster c by algorithm Ai (i.e. sin(c) = 1). Thus
we have : ∀i, Ai = {Xi,Θi, Si,Ki}. In order to simplify the
notation, we will most often use X and xn to describe the
data set and the data indifferently for all algorithms, but the
differences in viewpoints should still be kept in mind.

One general setting in which to cast the participating
clustering algorithms is the probabilistic model-based frame-
work. Many clustering techniques can indeed be depicted in
this model, e.g. fuzzy C-Means, Gaussian mixtures models
(GMM), mixtures of Bernouilli distributions, etc.

For example, in the case where Ai would follow a GMM
with Ki clusters, we would have Θi = {θi1, ..., θiKi

}, θik =
{πik, µik,Σik} where µik is the mean value of the kth cluster,
Σik its covariance matrix and πik the mixing probability.

However, the Θi are not limited to parameters describing
densities of probability and can also contain the configuration
parameters of the different algorithms.

B. Algorithm

In this article, and within the context of horizontal collabo-
ration, we are dealing with clustering algorithms that may be
very different in nature and can possibly work over different
feature spaces of the same data set. Given these condition, it is
impossible for these algorithms to collaborate by exchanging
their prototypes or parameters Θj . Earlier works have shown
that the only solution for heterogeneous algorithms to col-
laborate must be based on their solution vectors [8], [14].
Conveniently, with the data having the same id for all the
algorithms, it is possible to compare their partitions and to
make such communication between them happen.

As described in the introduction, the main collaborative
framework consists in a local step followed by a collaborative
step. This second step consists in exchanging the solutions
of the different algorithms to compare and improve their
respective partitions of the data.

During the iterative collaborative step, for a given algorithm
Ai and a data xn, this can be translated into Equation (2),
where sin(c)|coll is the responsibility given locally to cluster
c by algorithm Ai for the data element xn after taking



into account the solutions of the other algorithms; sin(c)
denotes the responsibility given locally to cluster c ∈ [1..Ki]
by algorithm Ai depending on its parameters Θi; λi is a
parameter that controls the degree to which each algorithm
accept information from the other collaborators; Q is the
ensemble of all possibles combinations of clusters that can
be entertained by the different algorithms for a given data xn;
q = {q1, ..., qJ}, qj ∈ [1..Kj ] one of this possible combination
of clusters; and gi(q, c) is a combination function chosen
to assess the likelihood of having qi = c given the other
clusters in the combination boldsymbolq. In Equation (2), for
any given data xn, we consider all the possible combinations
q ∈ Q so that qi = c.

sin(c)|coll = (1− λi) · sin(c) + λi

∑
q∈Q|qi=c

gi(q, c) · J∏
j=1
j 6=i

sjn(qj)


(2)

Equation (2) can be interpreted as follows: The first term
(1−λi) ·sin(c) is a local term weighted by the parameter λi. It
gives the likelihood for the element xn to be linked to a cluster
c based only on the local parameters of the algorithm Ai. For
probabilistic algorithms, we have: sin(c) = p(sin = c|xn, θic).
Thus, we want to highlight that sin(·) may have different
values after each iteration of the algorithm as Θi is optimized.
sin(·) must consequently be recomputed during each iteration:
During the first iteration of the collaborative step, this is the
same sin(·) than at the end of the local step, but after that it
must be recomputed using the updated local parameters.

The second term of Equation (2) is called a collaborative
term and evaluates the likelihood for the element xn to be
linked to a cluster c based on the other algorithms partitions
and their choice of cluster for the same data xn, weighted by
λi. To do so, in the case of fuzzy clustering this likelihood
must be evaluated for all possibles combinations of clusters
where qi = c -with gi(q, c)- and is weighted based on
the likelihood of this combination to occur for the data xn
assuming that all algorithms are independent from each other
- hence the

∏
sjn(qj)-. In this context, gi(q, c) is a combination

function that rates the likelihood of a combination q to
contain qi = c for algorithm Ai. The combination function
should be viewed as an approximation of the a posteriori
distribution involved in the computation of the likelihood of
the element xn. Examples of possible combination functions
gi(·) will be given in the next section where we will see
that the computation of gi is done using the a posteriori
partitions of the algorithms and that the idea behind optimizing
collaborative terms containing these functions is to reduce the
entropy between then different partitions.

This collaborative term can be interpreted as follows: for
each cluster combination q ∈ Q, gi(q, c) assesses the likeli-
hood of having qi = c with this combination q. Then g(·) is
weighted by the likelihood of such combination with the other
collaborators Aj 6= Ai for the data xn. The sum over all the
q ∈ Q makes it possible to take into account the fuzziness of
the solutions by summing up the likelihood of having qi = c
for all possible combinations.

For hard clustering or when Q contains too many combi-
nations (KJ on average) for Equation (2) to be computed
in a reasonable time for all the data, a semi-hard version
is given in Equation (3) where qmaxn is the most likely
combination of clusters for xn so that qmaxn ∈ Q, qi = c and
∀j 6= i, qj = argmaxqis

j
n(qi). Since Equation (3) considers

only the most likely combination of cluster for each element
xn instead of all possible combinations, it can be seen as
an approximation of Equation (2) that is much easier to
compute. With this approximation the product

∏J
j 6=i s

j
n(qj)

from Equation (2) is different from 0 only when q = qmaxn ,
and is therefore the equation simplifies.

Note that when factorizing λi in Equation (2) or (3) we find
the original form shown in Equation (1) and we can figure out
the expression for the diversity function in this system.

sin(c)|coll = (1− λi) · sin(c) + λi · gi(qmaxn , c) (3)

The combination function g(·), as an approximation of the
underlying a posteriori distribution, has specific properties:
• gi(q, c) needs to increase strictly when the consensus

between the different algorithms grows on the likelihood
of having qi = c for a given combination q.

• gi(q, c) needs to be normalized so that for any clus-
ter combination q that occurs at least once, we have:∑
c∈[1..Ki]

gi(q, c) = 1.
• When the algorithms have the exact same partitions and
c = argmaxqis

i
n(qi), then: gi(qmaxn , c) = 1.

These properties ensure that Equations (2) and (3) are well
defined. Since the goal of collaborative clustering is to mu-
tually improve the results for all algorithms, the best way
to achieve this goal is to optimize Equation (2) over all the
data for all the algorithms. This is equivalent to find S that
maximizes the likelihood function shown in Equation (6),
where S = {S1, ..., SJ} contains all the clustering partitions
and where smaxni = argmaxc(s

i
n(c)|coll) is the cluster that has

the maximum score based on Equation (2) or (3).
An elegant way to maximize Equation (6), and thus to

increase the likelihood of the solutions, is to use a parallelized
version of the EM algorithm [15].

The general Framework of our collaborative algorithm is
shown in Algorithm 1. This algorithm includes the local step
where each algorithm works on its own, and the collaborative
step with the meta-EM algorithm. The collaborative part of the
algorithm is iterative with the optimization process continuing
as long as the system global entropy [16], [17], [8] from
Equation (4) is not stable.

H =
∑
i,j

−1

Ki ln(Kj)

Ki∑
l=1

Kj∑
m=1

|cil ∩ cjm|
|cil|

ln

(
|cil ∩ cjm|
|cil|

)
(4)

In Equation (4), the notation cil refers to the lth cluster of
algorithm Ai, |cil| is the number of data in this cluster, and
|cil ∩ cjm| is the number of data linked to the lth cluster of Ai
and the mth cluster of Aj at the same time.



L(S) =

J∑
i=1

N∑
n=1

(1− λi) · sin(smaxni ) + λi
∑

q∈Q|qi=smax
ni

gi(q, smaxni ) ·
J∏
j=1
j 6=i

sjn(qj)

 (6)

C(S) =

J∑
i=1

N∑
n=1

λi
∑

q∈Q|qi=smax
ni

 1

Z(i, q)

∑
j 6=i

τj,i
|smaxni ∩ qj |
|qj |

 · J∏
j=1
j 6=i

sjn(qj) (7)

Algorithm 1: Collaborative Clustering Guided by Diver-
sity: General Framework

Local step:
forall clustering algorithms Ai do

Apply Ai on the data Xi.
→ Learn the local parameters Θi

→ Compute sin(c) for all data point xn and all
cluster c considered by Ai

end
Collaborative step:
while the system’s global entropy H is not stable do

Meta E-Step:
forall clustering algorithms Ai do

forall xin ∈ Xi do
Assess sin(c)|coll using Equation (2) or (3)

end
end
Meta M-Step:
forall clustering algorithms Ai do

Update the local parameters Θi -if any, and when
it is relevant- by using a maximum likelihood
estimation:

Θi = Argmax
Θ

{
log p(Xi|Θ)

}
(5)

end
end

III. OPTIMIZING THE COLLABORATION

A. Introducing the problem

The algorithm introduced in the previous section has
convergences properties identical to these of the origi-
nal EM algorithm [15], [18], with L(S) (Equation (6))
converging strictly toward a stationary point. Furthermore,
using a linear combination function g(· · · ) such as the
one in Equations (8) or (15) for which all values can
be pre-computed, the overall complexity of the algo-
rithm is O

(
J × (argmaxi

[
Cpx(Ai(N))

]
+K ×N)

)
where

Cpx(Ai(N)) is the algorithmic complexity of collaborator Ai.
The collaboration term is therefore linear and does not affect
the overall algorithm complexity in most cases. However, these
properties say nothing on about the following points:

• The global convergence of the likelihood function doesn’t
not warrant that all algorithms will converge locally.
Oscillations and partitions swaps are possible locally with
a global likelihood being stable.

• The fact that the algorithm converges quickly does not
mean that the results will be good when using quality
indexes. The risk of negative collaboration -where poorly
performing algorithms drag down all the others- remains
quite likely.

To solve this issue, in this section, we study how the
choice of a good combination function g(·) and its further
optimization can lead to a higher value of the likelihood
function and reduce the risk of negative collaboration by
further optimizing weight factors between the algorithms.

gi+(q, c) =
1

Z

∑
j 6=i

τj,i
|c ∩ qj |
|qj |

(8)

To do so, we propose to use the combination function g(·)
described in Equation (8) that allows to weight the different
algorithms. This function sums the pairwise likelihood of
having qi = c based on the a posteriori intersections of the
clusters. Each likelihood is then weighted by the term τj,i
that describes the degree to which algorithm Aj can influence
algorithm Ai. This function is equivalent to a weighted vote
where each algorithm gives a degree of agreement between its
cluster qj and the local algorithm cluster qi = c. The term Z

is a normalization constant so that
∑Ki

c=1 g
i
+(q, c) = 1.

Z(i, q) =

Ki∑
c=1

∑
j 6=i

τj,i
|c ∩ qj |
|qj |

We also remind that |qj | is the number of elements that
are in the cluster qj of algorithm Aj , and that |c ∩ qj | is the
number of elements that are in both the cluster c of algorithm
Ai and the cluster qj of algorithm Aj .

Given this Equation, the weights τj,i should obviously be
chosen to maximize the likelihood function L which in turn
should ensure better results. Using Equations (6) and (8), this
is equivalent to find the τj,i that maximize the collaborative
term for all data and all algorithms and thus to maximizing
Equation (7).

By changing the position of the sum
∑
j 6=i τj,i, Equation (7)

simplifies into Equation (9) where βj,i contains the most infor-
mation from the collaborative term and can be interpreted as



a non-normalized criterion assessing the degree of agreement
of algorithm Aj with algorithm Ai. βj,i is an asymmetrical
information based similarity measure between two different
clustering solutions.

C(S) =

J∑
i=1

∑
j 6=i

τj,i · βj,i (9)

B. Optimization with the Karush-Kuhn-Tucker conditions

We now want to find the τj,i that maximizes Equation (9).
To do so, we use the Karush-Kuhn-Tucker conditions (KKT)
[19] assuming that the weights τj,i are positive and subject to
the constraint of parameter p given in Equation (10).

∀i
J∑
j 6=i

(τj,i)
p = 1, p ∈ N∗ (10)

The results of the optimization under the Karush-Kuhn-
Tucker conditions are shown bellow for different values of
p in Equations (11), (12) and (13). The detailed calculi are
available in subsection IV.E thereafter.
• If p = 1,∀j 6= i:

τj,i =

{
1

Card(βj,i=maxj(βj,i))
if βj,i = maxj(βj,i)

0 otherwise
(11)

• For p > 1:

∀j 6= i, τj,i =
|βj,i|

1
p−1

(
∑J
k 6=i |βk,i|

p
p−1 )

1
p

(12)

• When p→∞:

∀(i, j), τj,i = Cte (13)

The summary of these results is the following: In the context
of collaborative clustering, the results should be better if each
individual algorithm gives higher weights to algorithms that
have solutions similar to the local one (high βj,i value for a
given Ai).

If we go into the details, we see that the degree to which
one algorithm should collaborate with other collaborators that
have dissimilar solutions depends on p in Equation (10). For
p = 1 (Equation (11)), each algorithm would only collaborate
with the algorithm that has the most similar solution. If several
algorithms have the same most similar solution, they would
be given the same weight. When using a higher degree of
normalization (Equation (12)), the algorithms with the most
similar solutions would still be favored to optimize the like-
lihood of the global collaborative framework, but algorithms
the solutions of which have a lesser degree of similarity would
still be taken into consideration locally. In fact as p gets higher,
the solutions from dissimilar algorithms would have a heavier
and heavier weight, and at some point they would matter just
as much as any other solution. In this later case, when the
value of p is high enough, this would be equivalent to give
the same weight to all the algorithms (Equation (13)).

C. Extension to other likelihood functions

In this subsection, we argue that the results of the previous
subsection are applicable to any function that uses weights in
the context of horizontal collaboration. To prove our point, we
first take the example of the simplified collaboration function
with hard or semi-fuzzy clusters. Then we use a different
weighted combination function g(·) from one of our earlier
work. In both cases, we show that the best weights still rely
on giving more importance on solution that are similar to the
local partition.

In the case of the simplified collaboration with hard or semi-
fuzzy clusters using Equation (3) and the same combination
function g+(·) from Equation (8). In this case, we can find the
exact same results after the optimization but with a simplified
βj,i, see Equation (14).

˜βj,i = λi

N∑
n=1

1

Z(i, n)

|smaxni ∩ smaxnj |
|smaxnj |

(14)

The same properties can also be found with other combina-
tion functions. For example, in one of our earlier work [8], we
use a product for the combination function instead of a sum.
The weighted version of this combination function as shown
in Equation (8) would lead to the same optimal weights as in
Equations (11), (12) and (13), with a slightly βj,i that clearly
still is a similarity index. This βj,i is shown in Equation (16).

gi∗(q, c) =
1

Z

∏
j 6=i

(
|c ∩ qj |
|qj |

)τj,i
(15)

β∗j,i =

N∑
n=1

ln

(
|smaxni ∩ smaxnj |
|smaxnj |

)
− lnZ(i, n) (16)

D. Interpretation of the results

These results are interesting because they go against the
common idea that collaboration works best between collabo-
rators having an average diversity [20], [21]. Indeed, common
sense would want us to think that a low diversity means not
much room for improvement since everyone agrees, and a high
diversity not enough common ground to reach an agreement,
thus making average diversity the best case scenario.

However it is our opinion that this interpretation carries
the bias of supervised learning. If we think about the goal
of collaboration in the context of unsupervised learning, these
mathematical results make sense: We are in a situation where
each algorithm does an exploratory task and has no supervised
index to rely on to guess quality of its solution. Therefore,
when several algorithms find solutions that are similar, it is
quite likely that they have actually found a structure in the
data. As a consequence collaborating with algorithms that
have solutions similar to the local partitioning is a convenient
way to avoid the risk of negative collaboration. There are
actually good reasons not to collaborate with an algorithm
whose results are too different from the local partition: Such
collaborator may be in a feature space where the clusters to be
found are completely different even for the same objects. The



dissimilarity of a solution with all others may simply mean
that this solution is a poor one.

These results can also be linked to recent works on clus-
tering stability [22], [23]. A clustering is said to be stable
if the partition remains similar when the data set or the
clustering process are perturbed. In the context of collaborative
clustering, the perturbations would be that (1) we observe
the same data in different feature spaces, and (2) we use
different algorithms. With our proposed weighting methods,
the algorithms with the strongest influence will be these with
solutions most often similar to the other algorithms’ solutions.
It matches with the definition of stability: Such solutions
that highlight common structures and clusters through several
feature spaces with different algorithms are the most stables.

As a conclusion to this theoretical section and based on the
previous results, we make the following proposition:

Proposition 1: In the context of horizontal collaboration
between several heterogeneous algorithms, the most efficient
way for a given algorithm Ai to collaborate is to favor
exchanges with other collaborators Aj that have similar and
stable solutions.

If this proposition may seem somewhat counter intuitive,
we are not aware of any existing mathematical counter-proof
for collaborative clustering.

E. KKT calculus

In this subsection, we show the calculus to solve the
optimization with the Karush-Kuhn-Tucker conditions: given
the βj,i ≥ 0 and p ∈ N∗, we are trying to find the matrix
T = {τj,i}J×J solving the following optimization problem:

minimize
T

−
J∑
i=1

∑
j 6=i

τj,i · βj,i

subject to
J∑
j 6=i

(τj,i)
p = 1, ∀i,

τj,i ≥ 0 ∀(i, j).

(17)

From the previous system, by using Lagrange multipliers,
we get the following KKT conditions:

∀(i, j), i 6= j



(1) τj,i ≥ 0

(2)
∑J
j 6=i(τj,i)

p = 1

(3) λj,i ≥ 0

(4) τj,i · λj,i = 0

(5) − βj,i − λj,i + νi ·
(
p · (τj,i)p−1

)
= 0

For now, we will ignore the case p = 1 to which we will
come back later. Let’s begin by considering the case where
λj,i 6= 0 in (4). Then, we would have τj,i = 0 and with
(5): βj,i = −λj,i ≤ 0. Since the βj,i have been defined as
non-negative, this case is not possible, therefore we will only
consider the case τj,i 6= 0 and λj,i = 0. Then, with (5), we
have:

τj,i =

(
βj,i
p · νi

) 1
p−1

(18)

From Equation (18) and (2), we have:

1 = (p · νi)
−p
p−1

∑
j 6=i

(βj,i)
p

p−1 = (νi)
−p
p−1

∑
j 6=i

(
βj,i
p

) p
p−1

(19)

Then we can write:

νi =

 1∑
j 6=i

(
βj,i

p

) p
p−1


− p−1

p

=
1

p

∑
j 6=i

(βj,i)
p

p−1


p−1
p

(20)
Then by injecting the expression of νi into Equation (18),
∀(i, j), i 6= j, p > 1 we have:

τj,i =
(βj,i)

1
p−1

(
∑J
k 6=i(βk,i)

p
p−1 )

1
p

(21)

And thus we have proved the result of Equation (12).

We will now come back to the case where p = 1. In
this case, the system obtained from the KKT conditions is a
bit different:

∀(i, j), i 6= j



(1) τj,i ≥ 0

(2)
∑J
j 6=i(τj,i) = 1

(3) λj,i ≥ 0

(4) τj,i · λj,i = 0

(5) − βj,i − λj,i + νi = 0

(22)

With (3) and (5), we have:

λj,i = νi − βj,i ≥ 0 (23)

Let’s suppose that there exists k so that τk,i > 0. Then with
(4), we have: λk,i = 0. And with Equation (23), we have:
νi = βk,i. Then, using this information we can say that:

∀j 6= k

{
τj,i 6= 0 =⇒ βj,i = βk,i =⇒ λj,i = 0

τj,i = 0 =⇒ λj,i = βk,i − βj,i ≥ 0
(24)

From the second line of Equation (24), we can conclude the
following:

τj,i 6= 0 =⇒ βj,i = max
k

βk,i (25)

Then, using conditions (4) and (5), we have:

τj,i(νi − βj,i) = 0 (26)

Summing Equation (26) over j and use (2), we obtain:



νi =

J∑
j 6=i

τj,i · βj,i (27)

For Equation (27) to be correct while respecting the con-
straints given in Equations (24) and (25), the only solution
is:

∀j 6= i, τj,i =

{
1

Card(βj,i=maxk(βk,i))
if βj,i = maxk(βk,i)

0 otherwise
(28)

We have therefore proved the result shown in Equation (11).

IV. EXPERIMENTAL RESULTS

A. Analysis of the weight evolution

In a first experiment, we sought to assess the behavior of
our proposed weighting method with two goals: 1) Checking
that the weights worked as intended with heavier weights
given to algorithms with a lower diversity. 2) Assessing that
the dynamic weights would stabilize at some point and thus
would not hinder the convergence process of the collaborative
framework.

To do so, we used the Waveform data set from the UCI
website:
• Waveform data set: This data set consists of 5,000 in-

stances divided into 3 classes. The original base included
40 variables, 19 are all noise attributes with mean 0 and
variance 1. Each class is generated from a combination
of 2 of 3 ”base” waves.

Our experiment was the following: We ran 5 regular EM
algorithms (GMM) in parallel over different versions of the
data set: Two with almost no noisy variables, two with a
moderate number of noisy variables, and one with a lot of
noisy variables. At the end of this initial step we had results
that were more or less good and close to each others depending
on the number of noisy variables. We then started the collab-
orative step from these results and ran our proposed method
with five EM algorithms collaborating together. During each
iteration and for each algorithm, we observed the absolute
average evolution of the weights τj,i they were giving to the
other collaborators. For this experiment, we used p = 2 (See
Equation (10)) and λ = 0.5.

In Figure 2 we show the absolute average weight evolution
per iteration for the five EM algorithms. Each curve represent
one of the collaborator.

Here is our interpretation of this graphics: First as one
can see, the weight slowly stops evolving over time. As
displayed on the diagram this is not a strict convergence,
but a convergence on average. This result makes sense since
the weights are based on a similarity measure between the
solutions and because in our algorithm the system global
entropy also converges on average. Another interesting remark
is that we can see that the algorithms that had the most noisy
variable (starting the highest) had their weights changing a
lot during the two first iterations but converged fast overall.

Fig. 2. Absolute average weight evolution per iteration for five EM algorithms
using the Waveform data set

On the other hand, the weights for the collaborator that had
no noise evolved less in the beginning but took more time to
stabilize as the other solutions became slowly more similar.
The internal behavior of our weight was the one expected
from the KKT optimization with bigger weights given to more
similar solutions.

B. Qualitative results

In our second experiment, we applied our proposed frame-
work to several data sets from the UCI website -see Table
I-, and assessed 2 indexes before and after collaboration. To
do so, we ran a few simulations on several split data sets and
checked the values of the Silhouette index [24] and the Davies-
Bouldin index [25] at the end of the local step and the end
of the collaborative step. Both indexes are clustering indexes
that evaluate the quality of a clustering based the distance
from each data to the nearest cluster centroid for the Silhouette
index and on the cluster separation and compactness for the
Davies-Bouldin index.

TABLE I
DATA SETS CHARACTERISTICS

Data Set Instances Attributes Clusters
Wine 178 13 3
WDBC 569 30 2
Waveform 5.000 19 3
EColi 336 7 8
Image Segmentation 2,310 19 7

In our experimental protocol, for each data sets, we created
5 subsets by removing some of the attributes randomly. Each
subset was then assigned to an EM algorithm using the gaus-
sian mixture model. We then ran our collaborative framework
as described in the previous section, with the parameters p = 2
and λ = 0.5. The results of this experiments are shown in
Table II where the average result over a dozen simulations is
shown in the main cells, as well as the best and worst results
over all simulation that are shown between brackets.

As one can see, our proposed frameworks has overall
positive results for two different clustering indexes. While it
is true that the improvement after collaboration is not huge,
our proposed method has the advantage of having very few
cases of negative collaborations (results getting worst after



TABLE II
AVERAGE IMPROVEMENT AFTER COLLABORATION

Data Set Silhouette Index DB-Index

Wine +1%
(

+3%
−2%

)
+1%

(
+2%
−1%

)
WDBC +1%

(
+2%
−1%

)
+1%

(
+3%
+1%

)
Waveform +4%

(
+15%
+1%

)
+1%

(
+2%
−1%

)
EColi +9%

(
+34%
−2%

)
+4%

(
+14%
+1%

)
Image Segmentation +4%

(
+12%
0%

)
+7%

(
+15%
−3%

)

collaboration) when compared with several of our previously
proposed methods that had no weighting system [8]. These
results highlight that our weighting system has the positive
aspect of reducing the cases of negative collaboration, but the
inconvenient that it may also lead to results that on average
are less impressive.

V. CONCLUSION

In this article, we have proposed and optimized a col-
laborative model applicable to the case of collaborative and
multi-view clustering. Using this model we have demonstrated
interesting properties that can be generalized to several frame-
works, and in particular we have shown how diversity can
be used to improve the results of unsupervised collaborative
learning. The conclusion from the theoretical part of our article
is that a lower diversity is a good criterion to choose collabo-
rators because it tends to favor stable clustering solutions, and
stability is a good unsupervised quality criterion to find the
intrinsic structures in a data set.

Our proposed collaborative framework as well as our
weighting model based on diversity have shown to be com-
patible with other collaborative models, and gave fair results
in the experimental part that show a reduced risk of negative
collaboration.

Possible extensions for this work would include a more
complete study on the stability properties of collaborative
frameworks as well as a possible generalization to other cases
of collaborative frameworks such as vertical collaboration
frameworks.
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