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Abstract—Whereas a large number of machine learning meth-
ods focus on offline learning over a single batch of data called
training data set, the increasing number of automatically gen-
erated data leads to the emergence of new issues that offline
learning cannot cope with. Incremental learning designates online
learning of a model from streaming data. In non-stationary
environments, the process generating these data may change over
time, hence the learned concept becomes invalid. Adaptation to
this non-stationary nature, called concept drift, is an intensively
studied topic and can be reached algorithmically by two opposite
approaches: active or passive approaches. We propose a formal
framework to deal with concept drift, both in active and
passive ways. Our framework is derived from the Minimum
Description Length principle and exploits the algorithmic theory
of information to quantify the model adaptation. We show that
this approach is consistent with state of the art techniques and
has a valid probabilistic counterpart. We propose two simple
algorithms to use our framework in practice and tested both of
them on real and simulated data.

I. INTRODUCTION

The current development of sensors and of the Internet of
Things leads to a dramatically increasing number of automat-
ically generated data: this volume was estimated to 2.8 ZB in
2012 by the Digital Universe Study [1]. Many of these data
appear in a stream fashion and thus cannot be stored in the
machine’s memory.

This new way of collecting data, as well as the gathering
of data in ever-growing social media, induces two major
problems that traditional machine learning algorithms cannot
cope with. First, older data in streams have to be removed from
the system memory and thus cannot be used anymore by the
learner. Secondly, the data generating process may vary over
time, in particular because of ageing effect [2] or of changes
in the environment (e.g. in fraud detection [3], [4]). This non-
stationary nature of environments is called concept drift.

There exists several ways a concept drift can occur in
a stream. If the data distribution changes permanently at a
given time step, the drift is called abrupt. On the contrary, an
incremental concept drift will be characterized by a continuous
change in the distribution which can possibly end up in a
new stationary state. In recurrent concept drift, the system
alternates between several stationary distributions.

To deal with concept drift, two strategies can be adopted:
active algorithms and passive algorithms. Active algorithms
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aim at identifying the distribution changes (in particular by
using a triggering mechanism) and adapt the model only once
a change is detected. On the contrary, passive algorithms adapt
the model at each time step without detecting a change.

Many methods have been proposed to deal with concept
drifts and state of the art algorithms are known to obtain good
performances in streaming environments [5], [6]. However, a
formal approach to the problem is less often addressed.

In this paper, we propose a formal approach based on the
Minimum Description Length (MDL) Principle. The MDL
principle is an inductive principle assuming that the best theory
to describe a system is the theory the programming of which
has the shortest expression on a universal Turing machine. In
particular, we will see that several existing methods are par-
ticular cases of our proposed framework. The MDL principle
has already been applied to a wide variety of problems, among
which model selection [7], analogy reasoning [8] and transfer
learning [9].

In section II, we will expose the general framework and
the Minimum Description Length Principle. We will show
that our approach is robust to all concept drift types we
previously exposed. After developing a general theory, we
will provide simplifications to deal with problems of different
natures. In section III, we will then propose two general
algorithms which can be used to deal directly with the MDL
principle. In section IV, we provide three different classes
of models that can be used in our framework: probabilistic
models, prototype-based models (inspired by Learning Vector
Quantization and Self Organizing Maps [10]) and models on
finite alphabets. Using the prototype-based class of models, we
give some experimental results we obtained using the proposed
algorithms both for active and passive incremental learning.

II. A FRAMEWORK FOR INCREMENTAL LEARNING
A. Notations for Incremental Learning

Let P be a problem space and S a solution space. At a
time step ¢, the system receives a problem X; € P and aims
at predicting the solution Y; € S. After predicting, the system
may receive the actual solution Y; to the given problem.

This formalism is consistent with several usual situations.
In particular it covers both cases of instance-incremental and
batch-incremental learning [11].



In instance-incremental learning, the system receives data
one by one. At a step ¢, the learner receives a point x € X
where X is an input space (typically, X = R?) and has to
predict an output y € ) (where the output space ) can be
either continuous in regression, or finite in classification).

In batch-incremental learning, the learner receives a batch
of data x1,...,x, and has to attribute a label yy,...,y, to
each of the input points.

Using our notation is direct in both cases. In instance-
incremental learning, the problem space and the input space
are the same. In batch-incremental learning, a problem consists
of a batch of instances of the input space X.

In both cases, the problem at time ¢ is denoted by X;. In
instance-incremental learning, X, € X" is directly an element
of the input space. If X is a vector space, we denote by X/ the
i-th coordinate of the vector X;. More generally, we will use
the upper-script index to designate the coordinate of a vector.
In batch-incremental learning, X; is given in form of a list
and we will designate by X, the n-th element of X;. In
particular, X, ,, is an element of the input space X.

B. Minimum Description Length Principle

The idea of our approach is to use the Minimum Description
Length Principle as an inductive principle in incremental
learning. Firstly introduced by Solomonoff’s theory of in-
duction [12], this inductive principle is exposed formally by
Rissanen [13]. The MDL principle is defined as follows:

The best theory chosen to describe observed data is the one
which minimizes the sum of the description length (in bits) of:

e the theory description

e the data encoded using the theory

The description lengths are calculated using the notion
of Kolmogorov complexity [14]. Given a string x, the Kol-
mogorov complexity of x, denoted by K (x) is defined as the
length (in bits) of the shortest program on a prefix Universal
Turing Machine M (i.e. a Turing machine which produces
decodable codes) generating the string x:

Km(x) = nin {1p);p() = x} (1)

In equation 1, the term P, designates the set of all programs
on the Universal Turing Machine M; I(p) is the length of the
program p and p() is its output.

A similar definition is proposed for the conditional Kol-
mogorov complexity of x given a string y:

Km(xly) = min - {i(p); p(y) = x} 2
PEPM

where p(y) is the output of the program p taking y as input
parameter.

It is important to notice in equations 1 and 2 that the
quantity is defined for a given Universal Turing Machine M.
The invariance theorem guarantees that the complexities for
two different machines are equal up to a constant. Based on
this theorem, a machine independent definition of Kolmogorov
complexity can be defined but will not be used in this article.
This choice is motivated by two reasons: first, the exact

Kolmogorov complexity is not calculable, as it requires an
evaluation over all programs on all Universal Turing Machines.
On the other hand, the choice of M can be used and exploited
as an inductive bias: by selecting a specific Turing machine,
we will control how the compression is operated. This choice
may seem arbitrary at first sight; but it is of a same nature
as the choice of a restricted class of hypotheses which is
used in Machine Learning for both theoretical and practical
purpose. In the following, we will abusively omit to mention
the machine in the expression of the complexity.

The ideal MDL can formulated using the notion of Kol-
mogorov complexity. Given data D, the model M chosen to
describe an observation is the model minimizing the objective
K(M)+ K(D|M).

C. Simplifying Assumptions for Incremental Learning

The following assumptions correspond to a choice for
Turing machine M.

To deal with incremental learning, we will consider that
each time step ¢ will be associated to a model M;. This model
is used to describe both the problem X; and the solution Y;.
The problem X, is described directly with the model M;. The
solution Y; is described with the help of a decision function S,
(the classifier in a classification problem or regressor in a
regression problem). The decision function [, is described
directly with the help of the model M;.

X

\

Fig. 1. Simplified framework for the description of problem X; and solution
Y: using model M¢. On this graphic representation, an arrow from A to B
means that string B is described using string A.

In order to apply this description (summarized graphically in
figure 1) to the mathematical expression of MDL principle, we
use the chain rule: if A and B are two strings, the following
equality is verified: K(A, B) = K(A) + K(B|A) + O(1).
Applying this equality to our description, we obtain:

K (X4, Yi|My) = K (X¢|M;) + K (8| My, X;)
+ K (Y| My, Xy, By) 3)

This value of complexity expressed in equation 3 applies
only to one time step. Further hypotheses over model transfer
have to be expressed to deal with the whole streaming process.

In the following, we will use the notation X.7 to designate
the vector (X1,...,Xr) of the T first values of X. We will
use the equivalent notation for the solutions (Y.r).



We decompose the global model as a description of all
models up to time 7. This decomposition is denoted M.r.
Besides, we suppose that the data (X;,Y;) at any time step
t are described only by the corresponding model M;. In
particular, they are not described by any previous data. As
a consequence, at a time step 7, the global description of the
data is given by:

T
K<D|M) :K(XT7YT|MT) :ZK(Xt?}/t‘Mt) (4)
t=1
D. Model Complexity

The term K(M.r) = K(My,..., M) is of major impor-
tance in the sense that it encodes the whole transfer process
between time steps and will be responsible for the adaptation
to the concept drift.

We will adopt a markovian point of view on the model
description. At time step 7', we consider that all the models
M, with t < T are described using previously defined models.
For any ¢t < T, we define an association function

A {1,...t—1} {01} (5)

such that A;(j) = 1 if model i can be described with the help
of model j, and A;(j) = 0 otherwise.

Using these association functions, we can express the com-
plexity of the models up to time 7" as:

T
, Mr) ZZK(Mt|MA;1({1})) (6)

t=1

K(M;, ...

In this equation, the notation A; *({1}) designates the set of
indices 7 such that A (i) = 1.

In practice, the association functions A; can be either fixed
by the system or learned online.

The choice of the functions A, is of major importance in
theory and in practice, because it offers to the system the
possibility to store previously acquired knowledge and thus to
memorize states of interest. A constant effort for obtaining
this property has been deployed in recent techniques [15].
Several choice scenarios can be considered in our case, which
all correspond to state of the art methods (figure 2):

e When A;(j) = 0 for all 4,j: all models are a priori
independent in terms of description. The model is learned
completely at each time step.

e When A;(j) =1 for all 4, j: the whole past models are
taken into account to describe the present model.

e When A;(j) =1 only for j > i — h with a fixed h: the
present model can be described with the last h models,
which correspond to a sliding window of fixed size. The
fixed sliding window is used in several algorithms like
FLORA [16].

e When A;(j) = 1 only for j > ¢ — h with a size h
estimated by the system: the size of the sliding window is
not fixed anymore but heuristically adapted to the current
problem. Such techniques are used in ADWIN [17].

Total independence Total memory

Adaptated sliding window

Fixed sliding window

Fig. 2. Possible choices for A function. The color of the square at line ¢ and
column j indicates the value of A;(5). If the square is dark, A;(j) = 0; If
the square is white, A;(j) =1

Besides the choice of the association functions A; have
consequences over the minimization objective at each time
step. Indeed, 1 values of these functions impose to add terms
relative to previous observations in the complete Kolmogorov
complexity. In practice, this is not necessarily possible, in
particular because old data are not stored in memory anymore.
Hence, considering old states in the complexity is possible
only with simplifying assumptions or with the use of a
stochastic gradient descent for the minimization.

E. Optimization problems

On the contrary to offline learning which proceeds to model
learning in only one step, incremental learning has to operate
in multiple phases: At each time step, the system has to answer
to the new occurring problem X; and to adapt to the actual
solution Y;.

In a strict use of the MDL principle, it would be possible to
optimize the model M when observing the new problem X;:
Indeed the data D can be considered as the delimited concate-
nation of all previously observed problem and solution couples
and of the new observation:

D= <(X15Y1)a'"a(Xt—la}/t—l)aXt> (7)

Using the previously defined notations and complexity
terms, the global complexity of the system at time step T’
is then defined as:

T—1
Kp=K(Mg)+ Y K(X:, Y| M) ®)
t=1

The learning problem that the system is facing, from the
Minimum Description Length point of view, is the minimiza-
tion of this global complexity K7 term over the whole history
of models M.7 up to time 7'

This minimization is complex for various reasons. One of
them is the interdependency of the M; which appear in several
terms of the sum (because of the A; functions). In particular,
all models have to be learned again at each time step. In
the perspective of data stream mining, this global update is
obviously impossible and algorithmic hypotheses have to be
chosen in order to overcome this difficulty.



At time step 7', we choose to optimize the complexity
over Mp_1 and Mrp only. The past models M.p_o are
supposed to be fixed and can be used for the description
of the last two models. This assumption is coherent with
the incremental paradigm in which data are not stored and
computations must be fast. Re-optimizing the whole modeling
process would require to store all data X.r and would be
highly time-consuming.

Hence, the optimization problem to solve at each time step
is the following:

minimize Ky — Kr_q + C(Xp_1|Mr_1)
Mr_1,Mr
+ C(Mr1|My-r ({1})) 9

FE. Probabilistic interpretation

A use of Kolmogorov complexity to measure the quality
of a learning is not the most frequent paradigm in Machine
Learning: A large range of methods rely on statistics and
probability theory.

Our method is not in opposition to those techniques; on
the contrary, they can be shown to be limit cases of or
complexity-based framework. Basically there exists a strong
correlation between Kolmogorov complexity and probabilities.
This correlation is justified intuitively by the Shannon-Fano
code. Over a finite alphabet, the Shannon-Fano code consists
in associating each character to a complexity based on its
occurrence frequency with the rule Pr(X) = 275X (or
equivalently K (X) = —log P(X), where log designates the
logarithm with base 2 as always in this paper).

The precise theoretical conditions to substitute the terms
K(M) and K(X|M) by their probabilistic counterparts are
discussed in [18].

Focusing on this interpretation, the minimization objective
in equation 9 corresponds to Bayes rule and the minimization
over the model (hence the probability distribution or the clas-
sifier) corresponds to the Bayesian criterion used in Maximium
A Posteriori and Maximum Likelihood Principles.

The very nature of the objective remains unclear. Two
approaches may be adopted, which correspond to the notions
of discriminative and generative learning [19]. The purpose
of discriminative learning is to establish a separation between
classes without estimating the density of the input points. On
the contrary, generative learning focuses on the estimation of
the generating process of the points.

In the terms of our framework, generative learning will
consist in choosing a class of models describing the data: in
a probabilistic setting, this class may be the class of joint
distributions over the input and output space. Discriminative
learning corresponds to a situation where the model M cannot
be used to describe data, which means in terms of complexity
that K(X|M) = K(X). In generative learning, the model will
thus correspond directly to the decision function f.

G. A general principle

As stated above, the proposed framework offers a common
description to a large variety of existing methods. We propose

to examine how state of the art methods can be expressed in
the terms of our framework.

1) Active methods: Active approaches of incremental learn-
ing aim to detect change time steps t explicitly. Previous
knowledge is used while no change has been detected.

Adaptive sliding window approach (ADWIN) [17] stores
all previous data points into a sliding window. At each step,
the sliding window is split in two sub-windows: the method
detects a drift if the difference of the errors for each sub-
window is higher than a parameter. ADWIN framework can be
interpreted in terms of Kolmogorov complexity as follows. The
model M; at time ¢ corresponds to the concatenation of data
memorized in the sliding window and of the corresponding
classifier. Considering constant sizes for the description of
data and description functions, and assuming that the decision
function [ is a constant during the whole process, the objective
to minimize over 3 is 3.1, K (Y;| Xy, 8). If a drift is detected
at time step n, the last 7' — n terms in the sum are changed
in take into account the introduction of a new decision
function B; and of the new data description using S;. As
the complexity term K (Y;|X;, 3) corresponds to a correction
term, a link can be established with empirical risk. Denoting
R,+1.7(B) the empirical risk of binary classifier 8 on the last
T —n data, the detection of a break point obeys the criterion:

K(B1)
T-N

Similar arguments may be given to other methods based
on sliding windows. In Probabilistic Adaptive Windowing
(PAW) [20], the probabilistic selection of samples to remove
from the window corresponds to a non-deterministic way to
minimize the global complexity.

All methods based on a statistical test are closely related to
our model: they all check a regularity in data, hence a way to
compress them. For instance, the validity of the Sequential
Probability Ratio Test (SPRT) [21] in our context can be
established in the same way as done for ADWIN.

2) Passive methods: Passive approaches of incremental
learning do not consider abrupt changes but continuously adapt
the learned decision functions to new incoming data.

Most passive methods rely on ensemble learning, and in
particular on bagging. The key point of bagging is that at
any time t the system relies on a pool of base learners
{hi}1<i<n. We consider that this pool corresponds to the
model M;. In order to deal efficiently with concept drift,
ensemble methods have to remove outdated experts from the
pool. Several strategies are used to select learners to eliminate,
including systematic removal of experts with performance
lower than a threshold, or elimination of the worst base learner.
The elimination of a base learner corresponds to a change in
the model, which has a cost in terms of complexity. The higher
value of K'(My|My-1(y)) has to be compensated by a lower
value of K(Y;|M;, X:, ), hence a better performance. To
express the value of Y; using M, and /3;, a method based on a
majority vote of all expert learners is used, thus the correction
term K (Y:|M;, X¢, 5t) can depend on all experts.

Rn+1:T(ﬁ) - RnJrl:T(ﬂl) > (10)



III. ALGORITHMS

In this section, we will develop methods to solve optimiza-
tion problem 9 in a context of incremental learning (i.e. with
low memory and high speed).

A. Dealing with previous models

We propose to classify algorithms depending on the way
they deal with previously acquired models. As mentioned
earlier, the dependency on the past is given by the complexity
term K (M;|M.;—1) which encodes the description length of
model M, at step ¢ and the previous models M.;_1 up to step t.
Using the previously defined association functions A, the ex-
pression has already been simplified into K (My|[Mu-1((y))-

In order to describe model M; with the help of the
set M -1((13), tWo strategies may be chosen: either use many
models in the set or select one single model.

The first strategy is employed in all ensemble learning
methods [22], [23], [24]. Such as in classical machine learning,
ensemble learning methods construct the solution to a new
problem by considering a weighted sum of the predictions of
previous models.

In the second strategy, the key idea is to select the optimal
model inside the set of predecessors M, - ({1} The selected
predecessor is the best model in the sense of MDL principle.

In the perspective of selecting one single predecessor for
each model, the total objective of equation 9 can be divided
in two parts. The first part corresponds to the description of
completed data at time step ¢ once the solution has been given
to the system:

¢1(My—1, M) = K(My—1|M) + K(X;—1|M;—1)
+ K(Be—1|My—1, Xp—1) + K(Yio1| M1, Xy—1, Be—1)
(11)

The second part corresponds to the description of incom-
plete data at time step t:

G2 (M, M) = K (M| M) + K(X¢| M) (12)
Equation 9 can be reformulated as:
minimize _ ¢1 (M1, M1) + ¢o(My, Mo) — (13)

My, M¢—1,M1,M;

In the following, we propose two algorithms to solve
problem 13 with a general class of models. The first algorithm
calculates model transformations at each step; The second
algorithm exploits a dynamic memory of previously calculated
models.

B. First Algorithm: Continuous Adaptation

In Continuous Adaptation Incremental Learning, the system
infers a new model at each time step ¢ for both model
M,_1 and M,;. The system has access to all previously
learned models M., and chooses a predecessor among the
models MA L1y and M, - L

In practlce "we separate the choice of the predecessor for
M;_1 and for M;. Such a separation is motivated by the fact
that the description of data at time ¢ depend on model M;_;

only by the transfer term in the case where the predecessor of
Mt is Mt—1~

Consequently, and using the notations introduced previ-
ously, we can describe the learning algorithm in three steps:

1) Minimize the objective ¢o(M;, M) over predecessor
M e My-({1})\{M;—1} and M,

2) Mlmmlze ‘the objective ¢1(M;_1,
M e MAtfl({l}) and M;_4

3) Minimize the objective ¢1(Mi_1, M) + ¢po( My, My_1)
over predecessor M € MA:I({l}), models M;_1

and M,

In practice, this algorithm can have interesting properties in
terms of comprehension of the underlying process. We propose
to represent the dependency between two models by a vertex
in a graph of models. Such a graphical representation makes
the dependencies obvious and would enable a user interpret
the decision, for example by detect easily periodic behaviours.

M) over predecessor

C. Second Algorithm: Memory Based Learning

The second algorithm we propose uses an ordered memory
of models. These models are used as a simplification in the
minimization.

At time step ¢, the system has access to a memory of my
models denoted My", ..., M . The stored models are used
as an approximation for the description models: Each model
M, is associated to a model in memory. On contrary to the
previous algorithm, a perfect adaptation to the data is not
required at any step, which implies that the algorithm is based
on approximations and is less precise than the first algorithm.
However, it is more convenient for high speed streaming data.

Memory X Y
L’ t
(g ) el
M4 - '\701/’
Ar=1 4 M, ,/M?},
i Me_s ) N M «M+n.VK
e, | @
Ay=0 . Insert
. : Modify

Fig. 3. General schema of Memory based algorithm

The algorithm relies on several approximations. First, a
model is chosen only among the previously learned models.
Once a model is chosen in the list, it can be updated using the
new data. If the complexity difference between the base model
and the updated version is high, the updated model may either
replace the base model or be inserted as a new memorized
model (figure 3). Another approximation consists in using the
difference of position in ordered memory as complexity for
model transfer:

K (M| M™)

— log(1 + |1 — k|) (14)



This algorithm is more efficient than the first proposed
algorithm in terms of computation time, in the sense that it
avoids optimizing the model at each step. The model choice
is made only by comparing the values of the complexity with
different accessible models; the optimization of the model will
be done only in a case where no model fits the observed data.

Hence, this algorithm corresponds to a process of active
learning: the change of model has to be detected before the
system actually calculates the new model.

IV. APPLICATIONS
A. Symbolic incremental learning

A first application of our model concerns non-continuous
data. The use of MDL principle has been introduced naturally
to analogy reasoning [8]. Analogy reasoning can be defined
as a form of reasoning in which one entity is inferred to be
similar to another entity in a certain respect, on the basis of the
known similarity between the entities in other respects [25].
In particular, proportional analogy concerns situations of the
form “A is to B as C is to D” (which will be denoted A : B ::
C: D).

An interesting example of proportional analogies have been
suggested by D. Hofstadter [26]. In these analogies, the terms
are strings made up of alphabet letters. In this micro-world,
it is possible to define a model as a generic construction rule
for both words and the associated transformation .

The framework we proposed for incremental learning can
be applied directly to sequences of proportional analogies. We
define a sequence of proportional analogy as a sequence of the
form X; : Y7 2 Xo: Yo i .. X Yo

Some empirical methods have been proposed to solve one
single problem of proportional analogy (for example the
Copycat project [27]) but the issue of sequences of analogies
has never been addressed, whereas it is of major importance in
human cognition. Our framework offers a direct way to deal
with this issue.

B. Probabilistic Models

Probabilistic models form another class of models which
can be used in the Minimum Description Length Principle
and especially in our approach of incremental learning. We
define a probabilistic model as a joint distribution Py 7y over
the input space X and the output space ).

Using the probabilistic model M = Py y to describe data,
we obtain:

n

K(X|M) =Y —logPx[X] (15)
i=1
The classifier 5 is obtained from M as follows:
B(x) = argmax Py x[Y = y|X = 7] (16)
yey

and thus K (8| X, M) = 0.

If the models M; and M,, correspond to the respective dis-
tributions P; and IP,,, then the model transfer term K (M;|M,,)
can be interpreted as the cross-entropy H betwen P, and P;:

K(M{M,)=H(P,,P,;) a7

The properties of such models in relation with information
theory opens new theoretical perspectives regarding incremen-
tal learning.

C. Prototype-based models

In order to test our framework, we have selected a simple
visual class of models. Our model is inspired by the Nearest
Prototype Classifiers such as Learning Vector Quantification
(LVQ) [10]. Such algorithms rely on a set of virtual points
called prototypes used to approximate the classification lo-
cally: the classifier maps a point in the input space to the
class of its closest prototype.

Consider a prototype set P of size K. A prototype Py €
P is a tuple P, = (pg,cr) where p, € X and ¢ € Y.
Using the prototype set P, a vector x € X is linked to the
closest prototype in P and its complete description includes
the specification of the index of the prototype and the encoding
of the relative position between the two vectors. With this
modeling, the complexity of the data point x is:

K(z|P) _minKK(x—pk) (18)

k=1

We choose to work on a basic Universal Turing Machine
which does not compress over the structure of a set of data:
A set of n vectors is encoded by the individual description
of each of the vectors. Besides, a vector is given by the
description of all his coordinates one by one. Hence, if X
is a design matrix, then:

n n d
K(X) = SR = 3 K(x)

i=1 j=1

19)

Given a prototype model P, a classifier g is built by select-
ing the class of the closest prototype. The method used to build
B simply enumerates the prototypes, hence K(5|M,X) = 0.

Given a classifier 5 and input data X € X", the complexity
K(Y|P, X, 3) corresponds to a correction term between the
predictions Y = 3(X) and the actual outputs Y. The correc-
tion method enumerates a list of correction terms, displaying
both the identifier of the point (of description length logn)
and the actual class (of description length log |Y|). Hence:

K(Y|P, X, ) = (logn+1log |¥]) > 1(Y; # (X)) (20)

i=1
where I designates the identity function the value of which is
1 if its argument is true and O otherwise.

In order to define the complexity K(Mt|MA;1({1})), we
propose the following process: Each model M; is described
as a transformation ®(M) of a single model M € A; ' ({1}).
Thus, the transfer algorithm is divided in two parts:

1) For all models M € A;'({1}), calculate the optimal

transformation &

2) Select the past model M and the transformation ® with

lower density.

The first step is obviously the longest and its time complex-
ity depends on the number of previous models considered by



the system (i.e. the cardinality of A; *({1})). In case of a first-
order markovian process, only the model M;_; is considered
by the algorithm.

In our prototype-based framework, we choose basic trans-
formations for the models. Three transformations are consid-
ered:

1) Prototype addition: a prototype is added to the model
(for example when a new class appears)

2) Prototype deletion: a prototype is removed because it

has become useless.

3) Prototype shifting: the prototype position is changed.

The methods suggested for both prototype addition and
removal are highly similar to the methods proposed by [28]
for Online Learning Vector Quantization. Our method just like
theirs is based on a score for both operations, however the
score we propose is more direct as it originates directly from
the theory itself.

We consider that a prototype model P (of cardinal K)
can be extended into a prototype model PT of cardinal
K + 1 if adding one extra prototype to the model makes
the global complexity decrease. Besides, adding a prototype
is compulsory when a new class appears. When adding a
new prototype, an additional term K, 44 has to be added to
the complexity K (M;|M.)): this term corresponds to the
complexity of adding a prototype px 41 to P:

Koqa = K(pK+1) + KlOg(K + 1) 21

In a similar way, a prototype model P of cardinal K can
be reduced into a prototype model P~ of cardinality K — 1 if
removing one particular prototype from the model makes the
global complexity decrease. This is the case in particular when
no input point is linked to a prototype in a new configuration
for a batch incremental learning problem. Removing prototype
p; from P requires to add an extra complexity term:

Krem = K(i) + K log(K — 1) (22)

The term K (i) can be chosen either independent of ¢ or
not. If K'(4) is constant, the cost to remove any prototype is
the same. On the contrary if K (i) = log(1 + i), the cost to
remove a recently added prototype is higher than the cost to
remove an older prototype.

As explained before, we choose to apply a global transfor-
mation function ® to the whole set of prototypes in order to
describe the prototype shifting. In our proof of concept, we
focus on linear functions of the form ®(p) = p+06+3(p) where
d is a global translation vector and d(p) a local translation
vector. The translation vector § applies to all prototypes in the
model. The vector 0(p) depends on the prototype p and is a
correction term. The complexity of the shifting process is:

K
Kenige = K(A)+ > C(5(p)) (23)
k=1

The algorithm used to infer the prototype-based models
at time step 7' is a variant of the Expectation-Maximization

(EM) algorithm [29]. EM algorithm alternates two steps: the
Expectation step (E step) and the Maximization step (M step).

In the E step, data points are associated to their closest
prototype, both in data for time 7" — 1 and for time 7.
Using this fixed point-prototype association, the position of the
prototypes is modified by minimizing the global complexity.
This new position is then supposed to be fixed.

In the M step, the classes of the prototypes are changed if
necessary using their new positions. The decision to insert or
remove prototypes from the considered model is also made in
the M step.

D. Experimental results

In order to illustrate the pertinence of our framework in
practice, we have tested its performances on classical data sets
with the naive prototype-based model. We considered three
datasets: SEA [30] (50000 instances, 3 attributes, artificial),
Weather [31] (18159 instances, 8 attributes, real) and Elec-
tricity Market [32] (45312 instances, 3 attributes, real).

For all datasets, we tested the instance-incremental version
of our algorithm (by streaming directly over the data) and the
batch-incremental version (by grouping successive data into a
same batch). The experiments were all done with a fix sliding
window size: |A;7'({1})| = 3. We tested the two proposed
algorithms.

Table I presents the performances for different size S of
batches. When S = 1, the situation corresponds to a prob-
lem of instance-incremental learning. Otherwise, the situation
corresponds to batch-incremental learning.

As the purpose of this paper is not to establish a competitive
performance for the suggested algorithms with the prototype-
based model, we do not propose any comparison to state of the
art algorithms. The key idea is that the obtained results are not
necessarily better but similar to existing methods. Developing
more accurate algorithms will be an improvement perspective
to this paper.

In practice, the calculation time with the passive approach
makes impossible to use this algorithm directly for a real-
time process: the optimization algorithms take too much time
even in the case of instance-incremental and makes the system
unable to deal with a real data stream.

TABLE I
ERROR RATE FOR SEVERAL BATCH SIZES

[ [S=1]85=5]5=10] 5=20 |

SEA Active 0.41 0.41 0.35 0.39
Passive 0.32 0.37 0.37 0.34
Weather Active 0.37 0.38 0.37 0.37
Passive 0.32 0.28 0.36 0.36
Electricity ~ Active 0.33 0.31 0.36 0.35
Passive 0.29 0.31 0.31 0.28

We notice that in general, the active algorithm has lower
accuracy than passive algorithm. This is coherent with the fact
that this algorithm relies on strong simplifying hypotheses.

The obtained results are not competitive with state of
the art algorithms, which was expected: Our method is not



specifically designed to perform well and the class of models
is very basic. We tested a very direct application of the
equations presented above regardless of time complexity nor
performance of the method. An effort has to be made in this
direction in future works. The results are good enough to
validate our framework yet.

V. CONCLUSION

In this paper, we have presented a new modeling the prob-
lem of incremental learning. This modeling offers a common
description for several existing algorithms and proposes a
unified approach of passive and active incremental learning
by the mean of Kolmogorov complexity. In particular, it has
been shown that our modeling is consistent with the sliding
window methods, ensemble learning and Markovian models.
We have proposed two elementary algorithms based on the
chosen inductive principle and we have tested our framework
with a simple class of models. By the mean of this tests, we
have shown its efficiency to deal both with batch incremental
and instance incremental learning in a context of concept drift.

Our work opens new perspectives in terms of theoretical
approach of incremental learning. Besides, the formalism we
developed can address a similar yet different problem: educa-
tion. Instead of adapting models from step to step, education
aims at finding the right steps to transfer a source concept into
a target concept. Finally, the link with information geometry
cannot be neglected: using probabilistic models, we have
enlightened the use of well-known quantities to infer a discrete
trajectory inside a manifold of probability distributions.
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