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Cornuéjols3
1Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University,

Espoo, Finland
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Abstract
Analogies are 4-ary relations of the form “A is to B
as C is to D”. When A, B and C are fixed, we call
analogical equation the problem of finding the cor-
rect D. A direct applicative domain is Natural Lan-
guage Processing, in which it has been shown suc-
cessful on word inflections, such as conjugation or
declension. If most approaches rely on the axioms
of proportional analogy to solve these equations,
these axioms are known to have limitations, in par-
ticular in the nature of the considered flections.
In this paper, we propose an alternative approach,
based on the assumption that optimal word inflec-
tions are transformations of minimal complexity.
We propose a rough estimation of complexity for
word analogies and an algorithm to find the opti-
mal transformations. We illustrate our method on
a large-scale benchmark dataset and compare with
state-of-the-art approaches to demonstrate the in-
terest of using complexity to solve analogies on
words.

1 Introduction
An analogy is a Boolean relation of arity 4 that usually reads
“A is to B as C is to D” and will be written A : B :: C : D
in this paper. It draws a parallel between two domains: the
source domain, consisting of the first two terms A and B, and
the target domain, consisting of the last two terms C and D.

Among other applications, analogies have been extensively
studied for their role in Natural Language Processing. The
fundamental role of analogy in linguistics has been known
since [de Saussure et al., 1916]. In his course, the notion of
analogy is introduced in the form of a problem: given two
forms of a same word (the source) and one form of a sec-
ond word (the target), the purpose is to induce the second
form of the target word. For instance, in German, an analogy
could be “setzen:setzte::lachen:x” where x is unknown. This
analogy corresponds to the flexion from the infinitive form
to the preterit form of the two verbs. The idea of the saus-
surian analogy is then developed in [Lepage and Shin-Ichi,

∗Contact Author

1996]. Its main principle is applied in several contexts such
as machine translation [Lepage and Denoual, 2005], [Lep-
age and Lieber, 2018], automatic pronunciation [Dedina and
Nusbaum, 1991], [Marchand and Damper, 2000] and translit-
eration [Langlais, 2013].

In this paper, we focus on the question of word inflection
(ie. modification of words) and propose a novel method to
solve analogical equations on words. A typical application
of our method consists of finding the value of x in the equa-
tion “solve:solves::get:x”. This method is based on the idea
that there exists a single transformation rule that applies for
both source and target domains and the purpose of which is
to describe the transformation from the main form to its in-
flection. For instance, such a rule to describe English plural
would state that letter ‘s’ has to be added at the end of the sin-
gular form. Obviously, infinitely many such rules exist. Iden-
tifying the relevant rule is often difficult and is a challenge to
the existing methods. Our point is to show that, in general, the
chosen rule corresponds to the least complex one. In order to
quantify the relevant notion of complexity, we present a sim-
ple language inspired by the language developed in [Murena
et al., 2017] and use it as a proxy in the approximation of
Kolmogorov complexity [Li and Vitányi, 2013].

The remainder of this paper is organized as follows. In
a first section, we briefly review existing methods to solve
analogies, and in particular analogies on words. Then, we in-
troduce our framework of transformation-based analogies and
show potential applications of Kolmogorov complexity for
the task of solving analogies in this framework. We present
next a restricted version of complexity, which is necessary
due to the incomputability of complexity. An algorithm is
then proposed, followed by some experimental results on
benchmark problems. We conclude the paper by a discussion
on the performance of our method and on its current limits.

2 Related Works
As presented in the introduction, analogy is a broad re-
search domain and we will present only papers related to
solving morphological analogies on words. We exclude se-
mantic analogies on words (king:queen::man:woman). For
other aspects of analogy (for instance analogies in knowl-
edge graphs), we refer the reader to reference surveys such

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1848



as [Gentner and Forbus, 2011] or [Prade and Richard, 2014].
A seminal work in the domain of computational analogy

is proposed in [Lepage and Shin-Ichi, 1996]. Their model is
able to perform operations such as prefixation, suffixation and
infixation. The methodology put forward is based on the idea
that, given an edit distance d(., .) between words, an anal-
ogy u : v :: w : x is true if and only if d(u, v) = d(w, x),
d(u,w) = d(v, x) and d(v, w) = d(u, x). This first compu-
tational model is equivalent to the parallelogram rule which
is involved in the task of solving of analogies in vector
spaces [Rumelhart and Abrahamson, 1973]. A more gen-
eral formalization of this principle is given with proportional
analogy [Miclet et al., 2008]. A proportional analogy is a 4-
ary relation R on a set X for which the following results hold
true for all u, v, w, x ∈ X4:
• u : v :: w : x⇔ w : x :: u : v

• u : v :: w : x⇔ u : w :: v : x

• u : u :: v : x⇒ x = v or u : v :: u : x⇒ x = v

The formal link between the solution based on the edit dis-
tance and the axioms of proportional analogy is discussed
in [Lepage, 2004].

A recent example of a method directly based on the axioms
of proportional analogy can be found in [Lepage, 2017]. The
idea of the method is to apply these axioms on the number of
characters in the four words, on the number of occurrences of
each letter, but also on terms of arithmetic relations describ-
ing the repetition of common patterns.

An alternative definition of proportional analogy on words
is given by [Yvon, 2003]. Based on the definition of a shuffle
operator ◦ (which performs an ordered merging of consecu-
tive subsequences of two words) and of a complementary set
operator \ (which removes the consecutive letters of a first
word from the second word), it is shown that x is a solution
of u : v :: w : x if and only if x ∈ {v ◦w}\u. A consequence
of this new characterization is that the set of all possible so-
lutions for an analogy can be obtained based on a finite-state
automaton. A development of this original idea was presented
with the alea algorithm [Langlais et al., 2009] which is based
on a random shuffling of the inputs.

Based on the parallelogram rule mentioned above, word
embedding techniques have recently emerged. It has been
noticed that the word2vec algorithm for word embedding pre-
serves the analogical relations [Mikolov et al., 2013]. The
model has been criticized for various limitations (see for in-
stance [Drozd et al., 2016] or [Rogers et al., 2017]). Also, its
general methodology is very different from what we propose,
since word embedding requires a training step on a large-
scale dataset, while we focus on solving analogies based on
one observation only. Additionally, analogies can be solved
only with words within the training dataset and word2vec
cannot handle new words.

We will conclude this short review by a different
but strongly related domain based on Hofstadter’s mi-
croworld [Hofstadter and Mitchell, 1995]. This microworld
has been developed as a toy domain covering an exhaus-
tive number of general problems encountered with analo-
gies. Even if the domain consists of letter strings, it differs
from the classical framework of morphological analogies by

the addition of some structural operations, such as copy or
succession operators. The Copycat algorithm, focusing on
this microworld, is able to solve analogical equations like
abc : abd :: ijk : x [Hofstadter, 1984]. It is noticeable that, in
most cases, Copycat fails at solving morphological analogies.

In an attempt to solve analogies in Hofstadter’s mi-
croworld, [Cornuéjols and Ales-Bianchetti, 1998] suggested
the use of the Minimum Description Length principle, an in-
ductive principle which minimizes the Kolmogorov complex-
ity of the observed analogy. Recently, [Murena et al., 2017]
introduced a generative language to evaluate the solutions of
analogical equations on Hofstadter’s microworlds. The idea
of using Kolmogorov complexity to solve analogies is also
present in [Bayoudh et al., 2010], which employs it as a mea-
sure of distance between concepts for proportional analogies.

The present paper proposes to adapt the ideas of [Murena
et al., 2017] to the special case of morphological analogies.
However, in contrast to their work, the language we consider
is completely agnostic to the alphabetical and morphological
structures. Besides, we also provide an algorithm for the au-
tomatic search of the solutions of analogical equations.

3 Our Proposition: Minimum Complexity
Analogies

3.1 General Notations
We consider a finite alphabet A. We will see later that this
alphabet does not need to be known in advance by our method
and can be discovered on the fly. Elements of an alphabet are
called letters. A word on A is defined as a finite sequence
of letters. The set of words is written A∗. We consider an
extension of the alphabet Ā = A ∪ {:, ::} where : and :: are
two additional symbols. We define the set of analogies on
A as An(A) = {a : b :: c : d|(a, b, c, d) ∈ (A∗)4} ⊂ Ā
where the notation a1a2 designates the concatenation of a1

and a2 ∈ Ā∗.
Let V al(A) ⊂ An(A) be a subset of analogies called valid

analogies. Given fixed words (a, b, c) ∈ (A∗)3, solving the
analogy equation a : b :: c : x consists in finding the values
of x ∈ A∗ such that a : b :: c : x ∈ V al(A).

3.2 Our Framework: Transformation-based
Analogies

In the context of grammatical word-transformations, analo-
gies can be restricted to an even more specific expression,
following the idea that a language is the result of a cul-
tural evolution which tends to regularize forms (except for
the most frequent ones) [Kirby and Hurford, 2002]. We sup-
pose the existence of some grammatical rules which are sup-
posed to apply to the main word. A rule is defined as a
function r that can map a word u into a word v. For in-
stance, a rule corresponding to the English plural would con-
sist in adding an ‘s’ at the end of the word. However, a rule
does not apply on any word (for instance, the previous rule
for the plural would not work for the word ‘mouse’). We
call the support of the rule the set of words on which the
rule applies. The support of rule r is denoted by Supp(r).
The valid analogies relative to rule r can be then defined as:
V alr(A) =

{
a : r(a) :: c : r(c)

∣∣a, c ∈ Supp(r)}.
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In this paper, we consider a related but slightly different
formulation. We aim to describe the base word and its inflec-
tion inside each domain at the same time. Consequently, we
associate each rule r to a function Tr, called transformation,
which takes some parameters as input and outputs the terms
a : r(a) for any possible a ∈ Supp(r). Due to the nature of
the problem, the function Tr needs to be computable and the
purpose of solving an analogy is to infer the right transforma-
tion. The problem is that infinitely many candidate transfor-
mations apply to an analogy. In our paper, we assume that the
solution to an analogy is given by the transformation with the
shortest coding. A formalization of this idea is given by Al-
gorithmic Information Theory, and in particular by the notion
of Kolmogorov complexity.

This assumption is motivated by several results. It has been
exposed by [Chater, 1999] that the search for simplicity is a
fundamental cognitive principle implied in pattern detection,
in memory but also in reasoning. This idea is supported by the
experiments proposed in [Murena et al., 2017]: In the context
of analogies in Hofstadter’s microworld, a majority of par-
ticipants proposed the solution of lowest complexity. These
observations tend to indicate that complexity minimization
might be a valid choice to solving analogical equations.

3.3 Kolmogorov Complexity
The notions presented here are classical notions of complex-
ity theory and can be found in [Li and Vitányi, 2013].

In this section, we will denote by B the binary set B =
{0, 1} and B∗ the set of binary sequences.

A function φ : B∗ → B∗ is called partial recursive if
its output φ(p) corresponds to the output of a given Turing
machine after its execution with input p. When the corre-
sponding machine does not halt for input p, we consider that
φ(p) =∞. With this notation, the function φ can be improp-
erly likened to a Turing machine. In this case, the input p is
called a program.

Complexity Kφ(x) of a string x ∈ B∗, relative to a partial
function φ, is defined as the length of the shortest program p
such that φ(p) = x: Kφ(x) = minp∈B∗{l(p) : φ(p) = x},
where l(p) represents the length of the string p.

It can be shown that there exists an additively optimal par-
tial recursive (p.r.) function φ0, which means that for any p.r.
function φ, there exists a constant cφ such that for all x ∈ B∗,
Kφ0

(x) ≤ Kφ(x) + cφ. Such functions are used to define
Kolmogorov complexity. They present in particular invari-
ance properties, which means that the difference between the
complexities defined by two distinct universal p.r. functions
is bounded. However, it can be shown that Kolmogorov com-
plexity is not computable, and thus cannot be used in practice.

To overcome this, a solution is to consider an upper-bound
of Kolmogorov complexity obtained with a non-optimal p.r.
function φ. This choice is a strong constraint but corresponds
to the choice of a bias inherent to any inductive problem.

4 Restricting the Descriptions
In this section, we present our definition of the p.r. func-
tion φ that we use to evaluate complexity. In order to define
this function, we propose a simple description language for

character strings and a binary coding of this language. We
would like to insist on the fact that this description language
is adapted for the description of any character string. The
peculiarities of analogies will be assessed in the next section.

4.1 A Simple Language for Texts
We developed a simple description language for charac-
ter strings in Ā. This language is inspired by the work
of [Murena et al., 2017] but differs in several ways. First,
our variant does not include any operator. This difference is
motivated by the fact that the system should not have access
to any prior information, except for copy and paste operations
(which is similar to the idea of [Yvon, 2003]). A second dif-
ference is an extended use of memory, which allows one to
store in memory instructions based on multiple parameters.
As we will present later, the number of parameters is auto-
matically detected when invoking an element from memory.

We present here this language in an informal way, that is
sufficient to reproduce it. The source code for a Python inter-
preter is available on the authors’ webpage. In order to make
explanations clear, we illustrate each concept with a short ex-
ample. For simplicity purposes, we consider examples where
A is the Latin alphabet. In the instructions, we use the nota-
tion ‘a’ to designate the letter a ∈ A.

(1) The language is defined on the alphabet Σ = Ā ∪
{gr, let, mem, ?} ∪ N. The Σ-letter gr delimits a group of
A-letters, the Σ-letter let delimits a memory storage and the
Σ-letter mem corresponds to a memory call.

(2) An instruction is given as a list of comma-separated
words. This instruction is executed sequentially. Each char-
acter of Ā is added to the output. For instance, the sequence
‘a’,‘b’ will output ab.

(3) Some instructions can be stored in memory. A memory
storage is delimited by let. The content of a memory stor-
age can include parameters, noted ?i where i is the index of
the parameter. For instance, the instruction let,?0,?0,let
stores a doubling operation.

(4) Memory is structured as a heap. Its content can be ac-
cessed using mem,i where i corresponds to the depth of the
element in the memory. A mem,i instruction is followed by
a list of arguments. The number of arguments is directly in-
ferred from the number of arguments in the corresponding
let instruction. For instance, the instruction

let, ?0, :, ?1, let, mem, 0, ‘a’, ‘b’

outputs a : b. It consists of storing a function (x, y) 7→ x : y,
calling the last memory storage and applying it on the two
characters a and b. However, if the mem,0 arguments were
changed to mem,0,‘a’ only, the syntax would be incorrect,
since the corresponding instruction expects two arguments.

(5) The gr is used to group some letters together, as a
single instance. This is used to define long parameters of a
memory call. For instance, after declaring let,?0,?0,let
calling mem,0,‘a’,‘b’,‘c’ will output aabc while calling
mem,0,gr,‘a’,‘b’,‘c’,grwill output abcabc. The gr in-
struction corresponds to parenthesis in most usual program-
ming languages. In the following examples, we will write
the groups as a concatenation for readability purposes: for
instance, gr,‘a’,‘b’,gr will be written ‘ab’.
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The most important property of our language is that it can
generate any possible string on the alphabet A, and conse-
quently any possible analogy, be it valid or invalid. However,
despite this complete description ability, the language is triv-
ially not Turing-complete: This can be verified by consider-
ing that the halting problem can be solved for it.

4.2 Some Examples
As an illustration, we now propose some examples of instruc-
tions that generate language analogies.

apte : inapte :: élu : x x = inélu (Prefixation)
let,?0,:,‘i’,‘n’,?0,let,mem,0,‘apte’,::,mem,0,‘élu’

átír : átírunk :: kitart : x x = kitartunk (Suffixation)
let,?0,:,?0,’u’,‘n’,‘k’,let,mem,0,‘átír’,::,mem,0,‘kitart’
pati : patti :: olo : x x = olto (Insertion)
let,?0,?1,:,?0,‘t’,?1,let,mem,0,‘pa’,‘ti’,::,mem,0,‘ol’,‘o’

pria : pria-pria :: keju : x x = keju-keju (Repetition)
let,?0,:,?0,‘-’,?0,let,mem,0,‘pria’,::,mem,0,‘keju’

vantut : vanttu :: autopilotit : x x = autopilotti (Reduplication)
let,?0,?1,’t’,:,?0,‘t’,?1,let,mem,0,‘van’,‘tu’,::,mem,0,‘autopilot’,‘i’

Figure 1: Results found by our approach for different types of trans-
formations. We also provide the instruction chosen by our program.

In Figure 1, we present some analogical equations of var-
ious natures which are successfully solved by our algorithm,
and give for each of them the corresponding instruction in the
proposed language. For instance, the code of the first example
(“apte : inapte :: élu : inélu”) reads as follows: The content of
the let environment describes the domain by coding for the
two terms, the base word (the variable ?0) and its prefixed
version (prefix “in” followed by the variable). The remain-
der of the instruction aims to apply the rule to two possible
words: “apte” and “élu”.

4.3 Binary Coding of Instructions
In order to define the p.r. function φ, we must define a map-
ping B∗ → B∗. In our context, two codes (hence two map-
pings from a given alphabet to B∗) have to be made explicit:
the code of the alphabet Ā and the code of the programs p (ie.
the arguments of function φ).

In the context of this work, the code CĀ : Ā → B∗ of the
alphabet Ā can be arbitrarily chosen with the constraint that
it is uniquely decodable (which means that for each concate-
nation x1 . . . xn and y1 . . . yn, the produced binary strings
are distinct: CĀ(x1) . . . CĀ(xn) 6= CĀ(y1) . . . CĀ(yn)). This
choice has no impact on our method since complexity mea-
sures the programs’ length and not the outputs’ length.

In order to propose a code for the instructions, we use the
language described above. We propose a code for the cor-
responding alphabet, as described in Table 1. By construc-
tion, the proposed code is prefix (which means that no code-
word is the prefix of another codeword), and consequently it
is uniquely decodable.

The choice of this code is an ad-hoc choice that can be
considered as the parameter of our method. In particular, it is
clear that the result of the analogy equations will depend on

gr 00 A 111
mem, n 01n+20 let 010

: 100 :: 101
?n 1101n0

Table 1: Binary code chosen for the proposed language. Bold values
correspond to codewords in the chosen code. The notation 1n stands
for a 1 repeated n times.

the choice of the code. The solution proposed in Table 1 is
motivated by several ideas.

A fundamental remark is that instruction words with small
description length will tend to be chosen more often than
words with larger description length. This might affect in par-
ticular the use of memory: if the memory instructions are too
costly, the optimal instructions will not use memory and will
prefer spelling the analogy directly. For this reason, all let-
ters have the same complexity: This choice is crucial since it
gives equal weight to any choice of letter and does not bias the
choice of an optimal solution toward instructions that would
be imbalanced in terms of displayed letters.

Since the number of variables in let parts is a priori un-
bounded, we propose to code all of them with a common pre-
fix 110. For variable ?n, this prefix is followed by n times
0 and a final 1. For instance, the instruction word ?2 will
be coded by 110110. This choice has two advantages: First,
it makes the code uniquely decodable and guarantees that an
arbitrary number of variables can be used. Secondly, it adds
a penalty for using too many variables by adding one bit for
each new variable added. This prevents from having too com-
plex instructions in a let. The same idea is applied to the
memory calls mem,n, with the prefix 011.

Since the code is uniquely decodable, each binary sequence
p ∈ B∗ corresponds to at most one instruction in our lan-
guage. We define function φ such that φ(p) is equal to the
output of the corresponding instruction if p can be decoded
into a valid instruction, and φ(p) =∞ otherwise.

Since our language allows one to describe each word x ∈
Ā∗ letter by letter, the following proposition holds true:

Proposition 1. For each word x ∈ Ā∗, there exists p ∈ B∗
such that x = φ(p).

5 Two Algorithmic Approaches
In this section, we present the algorithm we used to solve the
analogy equations by minimizing complexity.

5.1 First Approach: Global Minimization
The most generic complexity minimization method in a gen-
eral context would consist in considering that the chosen so-
lution for the analogy equation a : b :: c : x is:

x∗ = arg min
x
K(a : b :: c : x) (1)

where K(.) is the approximation of Kolmogorov complex-
ity as presented in the previous section. This minimization
problem alone gives poor results though, because it includes
no restriction on the targeted solution: For many analogies,
the obtained solution would be empty with this minimization
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only. As a solution, we impose a minimal length for the solu-
tion as a function of a, b and c. In our experiments, we fixed
it to |c| + |b| − |a|, taking our inspiration from the works on
proportional analogy [Lepage, 2017].

An exhaustive exploration of problem (1) is not possible
because it involves the exploration of an exponential num-
ber of programs. For instance, the minimum complexity in-
struction to describe the analogy “rosa:rosam::vita:vitam” is
of complexity 117 and it would require exploring all shorter
programs, ie. more than 3 × 1035 programs! However, one
can notice that it is not necessary to go over the whole explo-
ration space since some instructions are trivially not valid and
since an invalid instruction can never be the prefix for a valid
one. Consequently, we prune the exploration space based on
various implications of the grammar.

To do so, we sequentially explore all instructions by in-
creasing length. The idea is to start with the shortest instruc-
tions, discard those that are invalid, and avoid exploring all
of the instructions of greater length that have this instruction
as prefix. Invalid instructions are those that are syntactically
incorrect and that cannot be corrected by extension (for in-
stance, an instruction containing a variable ?0 outside a let
environment). Invalid instructions also include those yielding
results that do not match the known part of the analogy con-
sidered. The exploration goes on by increasing the length of
the instructions until we find an instruction that appropriately
describes the analogy at hand with a solution that verifies the
minimal length condition, as mentioned before.

Even with these simplification operations done, the explo-
ration space remains large and consequently, the overall com-
putation time is extremely high. For instance, and with a
reasonable implementation in C++1 run on a machine with
one processor Intel Core i7 2.9 GHz and 8G of RAM, it re-
quires a couple of seconds to find a solution for the analogy
“rosa:rosam::vita:x” and about 20 minutes for the analogy
“orang:orang-orang::burung:x”. This difference is explained
by several factors such as the length of the words forming the
analogy and the patterns observed in words, e.g., repetition of
letters or of groups of letters. Note that the exploration space
can be processed in parallel as the explored branches are in-
dependent from each other, but the results we report here are
obtained with a single-threaded process to give to the reader
a better sense of the performance of the algorithm.

Aside from the computational complexity of this approach,
we would like to present some results related to its perfor-
mance with regards to the task we are trying to solve. To this
end, we randomly select a subset of around 23K examples
from a benchmark dataset [Lepage, 2017] and containing a
large number of analogies in several languages (a detailed de-
scription of this dataset is available in the next section). This
first approach presented here performs poorly and the propor-
tion of correct answers we obtain is 27.62%, in contrast with
a proportion of 83.44% obtained when using the state-of-the-
art method [Lepage, 1998] (more details on this later). This
poor performance is due to a large number of programs which
break the symmetry between source and target by exploiting
one side effect of the language.

1The source code is available on the authors’ webpage.

5.2 Second Approach: Minimal Transformations
A major drawback of this first method is that it does not ex-
ploit the specificity of the chosen framework as presented ear-
lier. Taking these specific features into account leads to a
more efficient algorithm to solve analogies on words.

Following the idea that valid grammatical analogies are
generated by transformation functions, the research space for
programs can be pruned, considering only programs that de-
clare a transformation function and use it to generate both
the source and the target. This assumption is motivated by
the nature of the desired solution, but it is not equivalent to
problem (1). In particular, it is possible that the program of
smallest length cannot be interpreted as a transformation.

Since we focus on transformations, ie. on computable
functions that describe both the base form and the inflected
form of the same word, we need to search for programs with
a specific form. These programs must implement the transfor-
mation first, then instantiate it for the source problem and fi-
nally for the target domain. In our language, this corresponds
to searching for programs of the form:
let, ... , : , ... , let,
mem, 0, ... , :: , mem, 0, ...

The instruction within the let environment corresponds to
the description of the transformation. It is called twice, once
for the source and once for the target. The exploration task
now requires exploring all possible transformations and find-
ing the one of minimal complexity.

The algorithm we propose proceeds by exploring all pos-
sible contents for the let block. Due to the specific form of
the targeted program, only the arguments are needed to in-
stantiate the analogy’s description. These arguments can be
assessed on the fly while exploring the let instruction.

In order to solve the analogy equation A : B :: C : x, our
algorithm first explores all possible joint descriptions for A
and C, which corresponds to the term at the left of the char-
acter : in the let instruction. We sequentially increase the
instruction, character by character. If the character is a vari-
able, we store in memory its candidate instantiations. Conse-
quently, this first step yields a list of all possible descriptions,
associated with the possible variable instantiations for bothA
andC. A similar exploration can then be done for theB term,
using the already existing memory instantiations. A Python
implementation is made available on the authors’ webpage.

6 Experimental Results
In this section, we present the experiments we carried out

to evaluate our approach.
We first adopt a qualitative perspective and show how our

approach addresses different types of transformations. In
fact, solving analogies on words requires addressing different
types of flectional rules such as prefixation (fini:infini), suffix-
ation (rosa:rosam), insertions (koirani:koiralleni), repetition
(burung:burung-burung) and reduplication (puhua:puhuu).
Figure 1 shows one example for each type of rule and the
solutions generated by our approach for each one of them.
These results show that our method is able to solve a large
variety of problems, including some that are provably unsolv-
able by proportional analogy (repetition).
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Language #analogies NLG COMP NLG PROP NLG ALEA
Arabic 165,113 87.18% 93.33% 81.91%
Finnish 313,011 93.69% 92.76% 78.75%

Georgian 3,066,273 99.35% 97.54% 88.42%
German 730,427 98.84% 96.21% 95.42%

Hungarian 2,912,310 95.71% 92.61% 86.02%
Maltese 28,365 96.38% 84.72% 91.84%
Navajo 321,473 81.21% 86.87% 78.95%
Russian 552,423 96.41% 97.26% 95.46%
Spanish 845,996 96.73% 96.13% 94.42%
Turkish 245,721 89.45% 69.97% 70.06%
Total 9,181,112 96.41% 94.34% 87.93%

Table 2: Proportion of correct answers when solving analogies from
the dataset SIGMORPHON’16 using our method NLG COMP and two
state-of-the-art methods NLG PROP [Fam and Lepage, 2018] and
NLG ALEA [Langlais et al., 2009].

We now evaluate our approach on a large dataset of analo-
gies. We base our work on one of the largest datasets avail-
able for solving analogies on words that we denote by SIG-
MORPHON’16 and that is presented in [Lepage, 2017]. This
dataset is from the Track 1 Task 1 of SIGMORPHON 2016
Shared Task 2. Analogies were extracted from the original
dataset proposed in the context of the Shared Task. The data
includes ten languages (Table 2). As mentioned in [Cotterell
et al., 2018], considering these different languages covers a
variety of structures such as prefixes and consonant harmony
in Navajo, suffixes in Turkish, templatic morphology in Ara-
bic, and vowel harmony in Hungarian and Finnish.

The original dataset 3 contains around 65M analogy ques-
tions. It includes four questions for each original analogy,
where each of the analogy’s terms becomes the answer for
each question. We select one analogy for each set of four
questions and keep unique analogies by removing duplicate
questions. We thus obtain a dataset of around 9M analogies.

To assess the performance of our approach, we compare it
to the two state-of-the-art methods used for solving analogies
on words and based on proportional analogy: NLG PROP [Fam
and Lepage, 2018] and NLG ALEA [Langlais et al., 2009]. Re-
sults are presented, separately for each language, in Table 2.

The results show that our approach, NLG COMP, outper-
forms NLG PROP and NLG ALEA on the whole set of analo-
gies considered. Looking at the results obtained per lan-
guage, NLG COMP outperforms NLG PROP for Finnish, Geor-
gian, German, Hungarian, Maltese, Spanish, and Turkish,
but performs worse than NLG PROP for Arabic, Navajo, and
Russian. While NLG COMP outperforms NLG ALEA on all lan-
guages, NLG PROP performs better than NLG ALEA except for
Maltese and Turkish. We note that the different languages
are not equally represented in the original dataset SIGMOR-
PHON’16. It is worth mentioning that applying NLG ALEA
usually generates several candidate solutions, but we consider
here the most frequent solution given our setting.

General cases of transformations on which our ap-
proach cannot perform well include irregularities

2http://ryancotterell.github.io/sigmorphon2016/
3http://lepage-lab.ips.waseda.ac.jp/en/projects/kakenhi-

15k00317/

(work:worked::go:went), transformations of the radical
(tori:torilla::katu:kadulla) or conditional changes (rules con-
ditional to the radical of the word) such as vowel harmony
(hat:hatban::egy::egyben). While these cases cannot either be
solved by state-of-the-art methods, some other transforma-
tions that can be solved by NLG COMP but not by NLG PROP
and NLG ALEA are not included in SIGMORPHON’16 (see for
example the repetition transformation in Figure 1).

We also compared our approach to word embedding tech-
niques. For this purpose, we used pre-trained word embed-
dings [Grave et al., 2018]. We could observe a very poor
performance, with a proportion of correct answers ranging
from about 17% (for German) to less than 0.1% (for Maltese).
These results were expected: Not only the four words of the
analogy have to be present in the corpus on which the embed-
dings have been trained, but also in a statistically significant
proportion so that correct information can be acquired. This
is obviously not the case for most forms. These results tend
to indicate that using word embeddings is more effective to
solve semantic analogies than grammatical analogies.

To conclude, we point out a major advantage of our solu-
tion, which is its interpretability. The output of the algorithm
is not only the inferred fourth term of the analogy, but also
the description that justifies this choice. Such a description
could be exploited by an agent to explain its results to a user.

7 Conclusion
In this paper, we presented a novel algorithm for solving mor-
phological analogies on words. This approach differs from
most state-of-the-art methods in the fact that it does not obey
the axioms of analogical proportion. It follows a principle of
complexity minimization where complexity has to be under-
stood as the length of the shortest description of the analogy.
Although the idea of using complexity as a tool for solving
analogical equations has already been mentioned, our paper
is the first one to actually present an algorithm able to solve
this problem and to validate this assumption on large datasets.

Our algorithm explores a very large space of programs in
order to determine the minimal instruction that generates a
correct analogy. In order to bypass the difficulty of the task,
we focus on instructions of a grammatically plausible form.
We could validate our method on the benchmark dataset SIG-
MORPHON’16 on which we obtain competitive results. In
addition, our algorithms yields a description of its answer,
which is a major difference with existing methods in terms of
interpretability and explainability.

In this paper, we considered that each target is associated
with one source, which reduces the problem to finding the
fourth term of the analogy. To be more realistic, the source
should be found by the agent in a list of already known forms,
such as in case-based reasoning. This issue should pave the
way to more realistic models for language acquisition.
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[Li and Vitányi, 2013] Ming Li and Paul Vitányi. An intro-
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