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Abstract

Clustering is a compression task which consists in
grouping similar objects into clusters. In real-life
applications, the system may have access to sev-
eral views of the same data and each view may be
processed by a specific clustering algorithm: this
framework is called multi-view clustering and can
benefit from algorithms capable of exchanging in-
formation between the different views. In this pa-
per, we consider this type of unsupervised ensem-
ble learning as a compression problem and develop
a theoretical framework based on algorithmic the-
ory of information suitable for multi-view cluster-
ing and collaborative clustering applications. Using
this approach, we propose a new algorithm based
on solid theoretical basis, and test it on several real
and artificial data sets.

1 Introduction

Multi-source data is a never ending source of information that
is produced daily and must be processed by Machine Learn-
ing algorithms. They come from the Internet where data is
available from multiple sources for the same users (such as
social networks), but it can also be found in medical diagnosis
where multiple tests are run for the same patients, and finally
teledetection also produces a lot of complex multi-view data
where multiple types of color and texture attributes can be
used to describe larges images. The unsupervised exploration
and analysis of such data sets is a complex process which
gave birth to several recent fields of research in Machine
Learning. Multi-view clustering [Zimek and Vreeken, 2015]
and collaborative clustering methods [Cornuéjols ef al., 2018;
Vanhaesebrouck et al., 2017] are the two main families of al-
gorithms to process such data. Both types of methods use sev-
eral clustering algorithms to mine information locally in each
view and then share these information between the different
algorithms. From there, the main difference between the two
is that collaborative clustering only aims at sharing the infor-
mation between the local algorithms with a goal of mutual
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improvement, while multi-view clustering shares the infor-
mation and then aims at finding a single consensus clustering
partition. The two families of methods therefore share closely
related issues and feature similar algorithms. The main weak-
ness of the methods proposed in both fields is that, in most
methods, the multi-view clustering or collaboration can work
only between very similar clustering algorithms, thus reduc-
ing the diversity of methods that can be used. The litera-
ture features solutions where C-Means algorithms can col-
laborate together [Pedrycz, 2002], GMM can work together
[Bickel and Scheffer, 2005; Cleuziou et al., 2009], SOM
or GTM can collaborate together [Ghassany et al., 2012;
Filali et al., 2016], etc.

Within this context, in this paper we propose a new setting
for collaborative clustering (without consensus global solu-
tion), the aim of which is to be generic enough to enable any
type of clustering algorithm to work together within the same
collaborative or multi-view context. To do so, we use a col-
laborative fitness function based on Kolmogorov complexity
that can be used on any type of clustering local model to ef-
ficiently evaluate and reduce the distance between clustering
partitions.

This proposed collaborative algorithm can be seen as an
improvement on a previous collaborative framework that al-
ready encompassed any probabilistic clustering method [Sub-
lime et al., 2017]. In our case, we are not limited to proba-
bilistic clustering so long as the Kolmogorov complexity of
the local model can be computed. Furthermore, our model
gives a better justification for the general form of the collabo-
rative term. Another similar method is the SAMARA method
[Wemmert and Gancarski, 2002; Forestier et al., 2007] which
was designed to merge solutions from different clustering al-
gorithms applied to image processing. The main limits of
this latter approach are that 1) it discards completely the lo-
cal term which makes the specificity of the local algorithms,
2) the merging method is based on a conflict resolution algo-
rithm somewhat similar to what we propose, but based on an
arbitrary criterion with little theoretical justification. By con-
trast, our method uses a solid theoretical basis on information
theory with Kolmogorov complexity.
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The remainder of this article is organized as follows: In
Section 2, we present the general idea of the method and de-
fine a restricted universal Turing machine adapted to multi-
source clustering. In Section 3, we expose an algorithm based
on the presented framework. Applications of this algorithm
on artificial and real data sets is presented in Section 4. We
eventually discuss the advantages of our method and its po-
tential improvements in Section 5.

2 Collaboration with Minimum Description
Length principle
2.1 Reminder: Kolmogorov Complexity

A long philosophical tradition has investigated the problem
of induction. Among the proposed methodologies, Ockham’s
razor is widely used and discussed. This simplicity princi-
ple states that, among all possible hypotheses, only the “sim-
plest” one should be chosen to describe an observation. A
more formal version of this idea has been introduced in com-
puter science by [Wallace and Boulton, 1968] and [Rissanen,
1978] with the Minimum Description Length (MDL) princi-
ple. This principle states that the best model to select leads to
a maximal compression of observed data.

The notion of description length originates from algorith-
mic theory of information and designates the minimal number
of bits needed by a Turing machine to describe an object [Li
and Vitanyi, 2008]. This measure is given by the tool of Kol-
mogorov complexity. If M is a fixed Turing machine, the
complexity of an object x given an object y on machine M is
defined as K (x|y) = min,ep,, {{(p) : p(y) = x} where
P is the set of programs on M, p(y) designates the output
of program p with argument y and [ measures the length (in
bits) of a program. When the argument y is empty, we use the
notation K 4 (x) and call this quantity the complexity of x.

2.2 Fixing the Machine

With this definition, the complexity of an object cannot be
considered as an intrinsic property of the object since it de-
pends on a fixed Turing machine M. In order to overcome
this weakness, the invariance theorem enables to define a
machine-independent definition of the complexity. Although
such a measure has a major theoretical impact (see for in-
stance [Solomonoff, 1964; Hutter, 2000]), we will focus on
a machine-dependent approach in the rest of this paper. Our
choice is motivated by three main reasons exposed thereafter.
First, the universal complexity is not computable, since it
is defined as a minimum over all programs of all machines.
By choosing a precise machine, we restrict the research to
a minimization over the set of programs only, which can be
relatively simple depending on the chosen machine.
Secondly, machine dependency is a fundamental property
of learning. It is intuitively obvious that all learners have their
own data processing, and thus are naturally biased toward
some precise tasks. For instance, human mind is designed to
perceive some regularities in scenes that state-of-the-art algo-
rithms cannot get, while they are unable to cope with pattern
recognition in strings like DNA, which is now a basic task
for a computer program. Since any learning method has a
natural bias toward some kinds of problems, we propose here
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to interpret this property in terms of machine dependency: A
learning algorithm corresponds to a specific choice of a Tur-
ing machine with its representation bias.

Finally, we have to notice that this assumption is a clas-
sical assumption in statistical learning theory. The restric-
tion of the research space to classes of decision functions
(hence classes of Turing machines) is even the key hypoth-
esis in learning theory and leads to all classical definitions
such as the VC-dimension in supervised learning. Statistical
learning relies on this very assumption: because of the non-
calculability of probabilities and in order to prevent overfit-
ting (i.e. to reject distributions which do not obey the com-
monly admitted aim of generalization), the assumption of
choosing a restricted set of hypotheses is well accepted in the
machine learning field.

In the following, we consider that the machine M is fixed.
To make the equations easier to read, we will omit to spec-
ify the machine M in the complexity (hence we will denote
by K (x) the complexity of x on the chosen machine). The
purpose of the following section is to describe a class of Tur-
ing machines which is adapted to the multi-view setting.

2.3 Local Sub-Machine

Given multi-view data, the purpose here is to define a param-
eterized class of Turing machines M which generate the data.
In a multi-source setting, and without any loss of generality,
we consider that each view is encoded on a tape. We consider
that data points are encoded in a given (and known) order and
are separated, in such a way that the content of a tape can be
uniquely decoded.

Local clustering (ie. clustering on a single view) can be in-
terpreted as a compression of data based on external parame-
ters. For instance, a centroid-based clustering (like K-means,
K-medoids or GTM) compresses the data by “factorizing” a
common position into the center. We propose to define local
sub-machines as machines which take as input a parameter 6’
and a solution vector S7 and output the corresponding data.
The length of such machines is equal to K (X7|S7, 69).

The format of these machines will depend on the nature of
the clustering algorithms. It is noticeable that the framework
of algorithmic learning theory authorizes a large class of data
representations (and thus can be used for collaboration be-
tween different types of clustering methods). We provide a
couple of examples in the following:

e Prototype-based models (K-means, K-medoids, GTM,
SOM...): the parameter 67 is the description of the proto-
types. Each data point is represented by its membership
to its associated prototype (the association table being
given by the solution vector S7)

o Probabilistic models (GMM...): the parameter 67 de-
scribe the probability distribution inferred by the system.
In general, this distribution is parametric and 67 can be
associated to the parameters of the distribution. The de-
scription length of data X knowing a distribution p is
given by the relation K (X |u) = — log u(X).

e Density-based models (DBSCAN, OPTICS...): Even if
such models do not rely on a direct descriptive model,
it is possible to consider 6 as a data reordering. The
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total data set description is then based on the position of
previous points in the new order.

2.4 From Global Parameters to Local Views

We propose a decomposition of the global Turing machine
into sub-machines, as exposed in Figure 1. In order to make
the description more understandable, we invite the reader to
think of machines as actual computer programs and the com-
plexity (also called length) as the length of the program as
written in a fixed programming language.

The j-th local sub-machine is in charge of producing
data X7 from the clustering parameter #/ and the solution
vector S7, received as inputs. These parameters were trans-
ferred to it from a global configuration machine which stores
the whole configuration (ie. the complete description of
all #7s and S7s). A splitting operation is needed to transform
the output (9',S1,...,607,S7) of the global configuration
machine into the inputs (67, S7) of the local sub-machines.
Since we use prefix codes and the index j of the parame-
ters 67 and S7 is explicitly given onto the tape of the global
sub-machine, the complexity of this splitting operation is a
constant which does not depend on the data nor on the pa-
rameters.

The global configuration machine receives as input the
local parameters 6',...,07 and a global solution vec-
tor (S' ..., S7). The length of this machine corresponds
to the description length of the parameters 6 and the cost of
a concatenation (hence a constant). The complexity of the
local solutions is measured by the description length of the
sub-machine in charge of their generation.

The key of collaboration lies in the construction of the local
solutions (S, ... S7). This construction relies on a global
unknown solution S which might be interpreted as a consen-
sus. The nature of parameter .S will be discussed later: In
this section, we only consider it as a global parameter used
for the construction of local solutions. For each view j, a
sub-machine computes S’ from the global solution S. The
length of this sub-machine is Z‘{:I K (S71]5). Designing the
index j counts as a constant in the complexity and thus is not
indicated.

2.5 Complexity of a Machine

The architecture of the described machine is summed up
in Figure 1. The machines described by such a schema
constitute a parametric machine class given with parame-
ters 91,81, ...,67,S7,S. The length of a machine in this
class, up to an additive constant, is given by:

(M) = K(S)+> K(X7|S7,07)+K(S7|9)+K(67) (1)
i=1

Minimum Desc]ription Length principle states that the

model chosen to describe data is associated to the machine

of minimal length. As a consequence, the problem of interest

for multi-source clustering in the proposed framework is the

following: 1 yinimize  I(Mgs g1 g7.57.5) )

01,51,...,07,57,5
where [ is given in Equation 1 and My: g1, g7 g ¢ desig-
nates the Turing machine in the restricted class with indicated
parameters.

0's',..0's X

Figure 1: Graphical representation of the generative Turing Ma-
chine. A rounded box designates a sub-machine generating the ob-
ject; a squared box designates an input; an arrow designates machine
composition (the output of one machine used as input for the other
machine. The plate indexed by J indicates J independent replications
as for probabilistic graphical models.

This minimization problem presents interesting properties:
the first one is the genericity of the formula in Equation 1
which has the exact same form as state of the art methods for
multi-source clustering [Cornuéjols et al., 2018]. Tt can be
divided into a local term, corresponding to the description of
local views individually, and a collaborative term, measuring
the inter-view interaction. The collaboration is done at the
solution level, since a collaborative description of data would
be too complex and would be extremely sensitive to noise,
and a collaborative description of parameters #7 would be too
complex in case of heterogeneous nature of algorithms. Un-
like state of the art algorithms in collaborative clustering, our
method allows collaboration between algorithms of any na-
ture and not between algorithms of a same class while con-
sidering both local and global properties.

Another interesting property of this framework is its neu-
trality toward the question of the consensus of the views. As
discussed in the introduction, two trends emerge in multi-
source clustering: On the one hand, unsupervised ensemble
learning aims to converge to a single global solution by com-
paring local solutions; on the other hand, collaborative clus-
tering focuses on refining the quality of local views by ex-
ploiting properties of other views. The presented framework
performs equally on both tasks: the global solution S offers a
consensus while the local solutions S correspond to refined
local solutions. Depending on the context, our method can be
used for both tasks, which is particularly interesting.

As a final remark, we would like to insist on the reverse ap-
proach offered by our framework. Instead of using the avail-
able data to infer a model, we propose to use a model to gen-
erate the data. In a way, this approach is very similar to the
point of view of generative graphical models.

3 An Algorithm for Collaboration

In this section, we explain how we optimize the objective
function in Equation 2. In the scope of this work, we con-
sider only the case where the solutions S, - -- , .S’ produced
by the algorithms are hard partitions, and therefore can be
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described as vectors.

3.1 Forgetting Consensus

Even if the framework offers the opportunity to find a con-
sensus, we focus, in this paper, on refining local solutions.
Since S is used only as an intermediate parameter, we can
eliminate it from the algorithm.

In the optimization process, the complexity K (S7|S) can
be upper-bounded by min;; K (57]S?) since the S* are ad-
missible values for S. With this upper-bound, the solution S
is not needed any longer and can be eliminated from the prob-
lem. It is important to note at this point that this change is a
purely mathematical trick and has no real foundation in terms
of Turing machine description: in this setting, a local solution
would be constructed from another local solution, but loops
are not prohibited, which is not possible from a physical point
of view.

Designing a collaborative algorithm based on the
min;z; K (S7|S") upper-bound is possible, but the evaluation
of the minimum value requires a comparison of all possible
local solutions, which would be extremely costly. We propose
to circumvent the problem by considering that the minimal
value of complexity is upper-bounded by the average value
of relative complexity:

. L 1 L
K(57|S) <min K(57]5") < —— K(57|s 3
(8719) < min K($']8") < 7= S K(S'I5") )
J#i
This simplification is coherent with the general objective of
state-of-the-art methods in which the collaborative part cor-

responds to an average consensus measure between local so-
lutions.

3.2 Global Approach

Following the model of other collaborative and multi-view
algorithms, the optimization is done in 2 steps [Grozavu and
Bennani, 2010; Sublime et al., 20171:

e A local step during which each algorithm A7 processes
its local view X7 and produces a first model M7 =
(67,57 based only on the local information. These lo-
cal models are used as initial values.

e A global step during which Equation (2) is optimized.

The key difficulty of the algorithm lies therefore in the
global step, and in particular in the estimation of the com-
plexity K(S%S7). This term is evaluated by defining a
generic Turing machine which transforms a solution vec-
tor into another solution vector. The most direct idea for
such a machine is to build a naive mapping from S* to S7.
In general, such a mapping does not have any noticeable
property: in particular, it is neither injective nor surjec-
tive. We propose to encode the mapping as a key-value set
(1,R;,i(1)),...,(Kj,R;i(K7))) (where K7 denotes the
number of clusters for algorithm A7). The function R is
called a rule and associates each cluster index of A7 into a
cluster index of A°. Such a mapping is often not sufficient to
offer a full description of a transformation from one solution
into another: Some exceptions have to be added to describe
the exact transformation. An exception is encoded as a tuple
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(n,k%) € {1,..., N} x K® where n is the data index, k' the
cluster index, and IV the size of the dataset. An exception
overwrites the transformation rule.

Using this language of rules and exceptions, we can evalu-
ate the complexity K (S5%|S7) by measuring the length of the
corresponding machine, hence the sum of the complexity of
rules and the complexity of exceptions, each of them being
defined as the sum of the individual complexities of their
components. The complexity of rules is then K (R;;) =
K (k7)+K (k%) (cluster k7 is transformed into cluster k%, or in

pseudo-code: if cluster == kj: return ki) and
the complexity of an exception K (e) = K (n) + K (k') (n-th
pointisincluster k*,or if point == n: return ki).

We choose to encode all elements of a same set with the same
number of bits. Any element of a set of p elements can be
encoded on a prefix-machine with K (p) < log p + ¢ bits (see
section 3.1 of [Li and Vitanyi, 2008]) where c is a constant.
In practice, we do not take the constant into account, since
we are only interested in variations of complexity. Conse-
quently we choose a machine defined in such a way that the
description length K (S%]S7) is equal to:

K7 x (log K7 +1og K') + [€;,;| x (log N +1og K') (4)
where |, ;| corresponds to the number of exceptions in the
mapping.

In order to define the mapping in practice, we consider the

confusion matrix Q"7 that maps the clusters of S* to the clus-
ters of S7:

,J . 2,J
w11 o Wi K;
i, _ . “J | Qi J
O = : where w7, =[S, N S}
%] 4,7
W1 K;,K;

(&)
where K7 is the number of clusters considered by algo-
rithm A7, From there an argmax on each line of 2%/ in Equa-
tion 5 gives us the majority mapping rule for each cluster of
A" into a cluster of A’. Using this method, a compression
is obtained by defining a general mapping transforming all
labels of S® into labels of S7 and correcting the errors after-
wards. The time complexity to compute all the rules between
all solutions vectors using this method is in O(N) for solu-
tions vectors of length V.

Given these elements, optimizing Equation 2 consists in
searching for the error corrections that would have the most
positive impact on the collaborative term Y-, K(SS7)

with a minimal impact on the local term K (X?|M?). Cor-
rections that do not improve the collaborative term or have a
negative impact are ignored.

3.3 Description of the Algorithm

We decompose the algorithm into three main steps: Local
optimization, solution mapping and mapping optimization.

The local optimization step consists in a parallel run of all
local clustering algorithms. Because there is no collaboration
in the local term in Equation 2, algorithms can run without
any interaction. We notice that we do not aim to minimize the
expression of complexity directly, but we use standard algo-
rithms instead: The clustering algorithms are seen as research
biases for the minimization of complexity.
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The initial solution mapping involves a one-by-one pairing
of solutions. The algorithm determines the rules by selecting
the maximal cluster associations based on the confusion ma-
trix (as explained in the previous section and in Equation 5).
The time complexity of this step is O(N x J?). Afterwards,
exceptions can be obtained easily (in linear time complexity).

The mapping optimization is the most complex step of the
method. Considering that all data points are described inde-
pendently, this step can be done on all data points in paral-
lel. It consists in removing exceptions one by one until no
exception removal makes complexity decrease. A recursive
approach has been chosen to determine a consensus for one
data with fixed rules . The proposed algorithm removes ex-
ceptions one by one in a backtracking process. The advantage
of backtracking is that it gives an exact solution. Besides,
in case two solutions have the same complexity, the solution
with minimal depth in the backtracking tree is selected.

At each step, the algorithm has access to a finite list of
exceptions and removes the bad exceptions: from one step
to another, the complexity can only decrease. Because the
number of possible solutions is finite and the total complexity
is necessarily non-negative, the algorithm must converge in a
finite number of steps. Hence, no stopping criterion has to be
given.

4 Experimental Validation

4.1 Datasets

In this section, we propose an applicative setting in which we
used our proposed method on various multi-view data sets,
real and artificial.

We considered the following data sets:

e The Wisconsin Data Breast Cancer (UCI): this data set
contains 569 instances with 30 parameters and 2 classes.
These 30 parameters contain 10 descriptors for 3 differ-
ent cells (10 each) of the same patient. This data set can
easily be split into 3 views: one for each cell.

e The Spam Base data set (UCI): The Spam Base data set
contains 4601 observations described by 57 attributes
and a label column: Spam or not Spam (1 or 0). The
different attributes can be split into views containing
word frequencies, letter frequencies and capital run se-
quences.

e The VHR Strasbourg data set [Rougier and Puissant,
2014]: it contains the description of 187058 segments
extracted from a very high resolution satellite image of
the French city of Strasbourg. Each segment is described
by 27 attributes that can be split between radiometical
attributes, shape attributes, and texture attributes. Fur-
thermore, the color attributes can also be split between
Red, Blue and near-infrared attributes. The data set is
provided with a partial hybrid ground-truth containing
15 expert classes.

e The Battalia3 data set (artificial): Battalia3 is an artifi-
cial dataset created using the exoplanet random gener-
ator from the online game Battalia.fr; This data set de-
scribes 2000 randomly generated exoplanets with 27 nu-
merical attributes and their associated class (6 classes).
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The attributes can be split between system and orbital
parameters (7 attributes), planet characteristics (10 at-
tributes) and atmospheric characteristics (10 attributes).

e The “MV2” data set (artificial): a data set created specif-
ically to test this kind of algorithm. It features 2000 ran-
domly generated data, split into 4 views of 6 attributes
each, and a total of 4 classes. All attributes were gener-
ated either from Gaussian distributions with parameters
linked to the matching class, or are random noise, or are
linear combinations of other attributes.

Dataset Size Attributes | Views
WDBC 569 30 3
SpamBase 4601 57 3
VHR Strasbourg | 187058 27 3
Battalia3 2000 27 3
MV2 2000 24 4

Table 1: Dataset characteristics

4.2 Experimental Results

To assess the effectiveness of our proposed method, in this
section we propose an experiment in which we compare it
with four other collaborative and multi-view methods from
the literature: the entropy based collaborative clustering
(EBCC) [Sublime et al., 2017], a re-implementation of the
multi-view EM algorithm [Bickel and Scheffer, 2005], the
collaborative GTM algorithm [Ghassany er al., 2012] and
the collaborative SOM algorithm [Nistor Grozavu, 2009].
For fairness purposes, with collaborative GTM, collaborative
SOM and MV-EM all being based on Gaussian Mixture mod-
els, we used both our proposed method and the EBCC algo-
rithm with GMM clustering algorithms as well.

The 3 methods are compared using two unsupervised in-
dexes: the Davies-Bouldin index [D.L. Davies, 1979] (DBI)
and the Silhouette index [Rousseeuw, 1987] (Sil.), both of
which assess in different ways the quality of the cluster in
terms of compacity and whether or not they are well sepa-
rated. The Davies-Bouldin index is a positive not normalized
index the value of which is better when it is lower. The Sil-
houette index is a normalized index which takes values be-
tween -1 and 1, 1 being the best possible value.

Furthermore, since all data sets were acquired from origi-
nally supervised problems, they were all provided with avail-
able labels. Consequently, in our experiments, we also used
the Rand Index [Rand, 1971] based on the original classes as
an external index.

For VHR Strasbourg dataset, the runtime (without the ini-
tial local clusterings) was less than one hour with parallel
computing, a couple hours otherwise. For other data the run-
time ranged from less than one second to 2-3 minutes for
larger data sets.

In Table 2, we show the average results achieved on the
unsupervised indexes at the end for the multi-view or collab-
orative process. The results for the supervised indexes (Rand
index) are shown in Table 3. Both the Davies-Bouldin index
and the Silhouette index where computed using the partitions
found on the local views and the complete data as reference.
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| Dataset | Our Model [ MV-EM EBCC | GTM«' [ SOM®' |
| [DBI | Sil. [DBI[ Sil. [DBI[ Sil. [ DBI| Sil. | DBI | Sil. |
WDBC 0.98 055 [ 1.63 | 042 [ 1.63 ] 042 [ 1.8 [ 0.37 | 1.68 | 0.41
SpamBase | 3.08 | 0.19 | 4.77 [ 0.086 | 4.73 | 0.085 | 4.60 | 0.093 | 435 | 0.113
VHR Strasbourg | 3.46 | 0.14 [ 321 | 0.12 | 2.89 [ 0175 | - - - -
Battalia3 2.29 [ 034 [ 243 0.16 | 283 | 0.14 [ 2.68 | 0.35 | 2.51 | 0.25
MV2 1.6 | 037 | 1.34 [ 035 [ 1.34 | 035 | 1.6 | 038 | 1.44 | 0.39

Table 2: Experimental results: raw average results on unsupervised indexes

| Dataset/Rand | Our Model [ MV-EM [ EBCC | GTM®'" | SOM*" |

WDBC 0.95 0.79 0.87 0.96 0.97
SpamBase 0.76 0.74 0.86 0.83 0.84
VHR Strasbourg 0.78 0.73 0.75 - -
Battalia3 0.86 0.78 0.80 0.78 0.79
MV2 0.93 0.93 0.93 0.90 0.90

Table 3: Experimental results: raw average results on the Rand Index

WDBC -B-Our mode

SpamBase

WDBC -8-0ur model

- MV-EM

LEP
“ EBCC
¢ oss GTMED
08 SOMco

07

SpamBase

(b) Rand Index

Figure 2: Radar maps for Silhouette and Rand Index on the datasets
of interest.

The absence of results for both collaborative GTM and SOM
algorithms for the VHR Strasbourg dataset is due to the fact
that neither of these algorithms was able to provide a result in
a reasonable amount of time.

In Figure 2, we show a radar map made from the Silhou-
ette and Rand Index tables. As one can see from the figure,
our method overall outperforms the other algorithms with a
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much larger area coverage and we still achieve close to state
of the art results with datasets for which our method is not
the best one. Without surprises, the older MV-EM algorithm
has the overall worst performances, followed by Kohonen
maps based collaborative algorithms and then the more re-
cent Entropy based collaborative Framework (EBCC) which
sometimes has better results than our proposed method albeit
with a smaller coverage area in both supervised and unsuper-
vised indexes. Furthermore, unlike the collaborative SOM
and GTM algorithms, our method does scale to relatively
large dataset like VHR Strasbourg. We would like to point
out that scaling is not an issue here, neither in terms of num-
ber of data nor in terms of number of features. As explained
in the paper, each data can be treated separately, so a par-
allel run can be done. Moreover, time complexity depends
on the local complexities (which are, in general, linear in the
number of features). These results highlight the strength of
our method, and come to back up its strong theoretical back-
ground -compared with the other competitors- with good ex-
perimental performance.

5 Conclusion

In this paper, we have proposed a new perspective on the
problem of multi-source clustering. Inspired by algorithmic
information theory, we reduced the problem to a model selec-
tion over a well-defined set of Turing machines. Compared to
state of the art methods, our methodology is based on a well-
known theoretical background and does not rely on heuristics.
Besides, its strength is highlighted by excellent experimen-
tal results both for artificial and real data, with a naive and
parameter-free algorithm.

The study proposed here is just one of the various ap-
proaches to the problem. First, the properties of the designed
algorithms have to be investigated from a theoretical point of
view, in particular in the direction of stability. In addition,
our focus was on collaborative clustering but an adaptation of
our method to unsupervised ensemble learning (finding con-
sensus) comes directly.
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