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Abstract. When interacting with a human user, an artificial intelli-
gence needs to have a clear model of the human’s behaviour to make the
correct decisions, be it recommending items, helping the user in a task or
teaching a language. In this paper, we explore the feasibility of modelling
the human as a case-based reasoning agent through the question of how
to infer the state of a CBR agent from interaction data. We identify the
main parameters to be inferred, and propose a Bayesian belief update as
a possible way to infer both the parameters of the agent and the content
of their case base. We illustrate our ideas with the simple application of
an agent learning grammar rules throughout a sequence of observations.

Keywords: User modelling · Machine learning for CBR · Bayesian
Inference for CBR

1 Introduction

Many applications strongly rely on the interactivity between a human user and
an Artificial Intelligence (AI). In such applications, a human agent performs
actions to complete a specific task in cooperation with an AI agent which guides
them along the way, either by providing advice, corrections or by intervening
directly in the environment [5]. Intelligent Tutoring Systems (ITS) [1] are an
example of such applications, where an AI proposes specific learning materials
to help a human learner acquire a specific concept.

Despite their differences, all these applications share an important feature:
since they involve the collaboration between two agents, the human user and the
AI, they require both agents to have a good understanding of their collabora-
tor [4,18]. From the perspective of the AI, this is done in practice by providing
the AI agent with a model of the human user. In the case of ITS, such a model
could describe what the learner knows [6,19] or how they acquire knowledge [16].
Alternatively, in model-based recommender systems, a user profile is used to rep-
resent their tastes and preferences, based on which items will be recommended
by the AI agent.
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Case-Based Reasoning (CBR) has been involved in a long tradition of contri-
butions to the field of interactive systems, some of which made in the domain of
education [7], by suggesting how an AI could optimally interact with a user. This
paper takes a rather different position: We propose a novel interactive framework
that models the human user as a CBR agent, having thus principles from CBR
dictate how the user acquires and reuses knowledge from previous observations.
Using such a user model enables taking into account different effects that go
along with the learning experience, such as the memorization, forgetting, and
adaptation of previous observations.

Modeling the user as a CBR agent raises various technical challenges, includ-
ing the question of how to infer the characteristics of the user from their behavior,
in particular when these characteristics are not stationary and evolve through-
out the interaction. When the case base of the user is known, it does not seem
challenging to infer the other characteristics, such as the similarity metric used
for retrieval or the parameters of the adaptation [17]. The main difficulty arises
when the content of the case base is unknown to the AI agent. In this paper, we
propose to alleviate this uncertainty using Bayesian belief update for a joint infer-
ence of the content of the case base and of the CBR characteristics. Although
this methodology shows good performances, we also discuss that it would be
illusory to expect a full inference, since some CBR configurations cannot be
distinguished only based on their outcomes.

The remainder of this paper is organized as follows. In Sect. 2, we introduce
a formalization of the interactive process using Partially Observable Markov
Decision Processes (POMDP). This formalization introduces the user model as
a latent variable and highlights the need for an AI agent to infer the parameters
of this model. Section 3 discusses how a CBR agent can be used to model the
human user. We then identify the parameters of this CBR agent that need to be
inferred during the interaction. The inference itself is described in Sect. 4: after
presenting the general principle, we develop a simplified case where the CBR
is assumed to be deterministic and we discuss the algorithmic implementation
of this procedure. These principles are then applied to specific applications, the
results of which are presented in Sect. 5. We conclude the paper with a discussion
on the perspectives offered by the presented techniques.

2 Problem Statement: Interaction with a CBR Agent

Let P be a problem space and S be a solution space. We call a case a tuple
(x, y) ∈ P × S. The problem of a CBR agent is to infer a plausible solution
ytgt ∈ S to a problem xtgt ∈ P.

We consider an agent, the user, taking some decisions based on the observa-
tion of a sequence of cases. Given a case base CB, the sequential process can be
described as follows: the user observes a problem xt ∈ P and takes a decision ωt

in reaction to this problem. We note that this decision ωt is not necessarily equal
to the estimated solution ŷt to the problem xt, but is related to it. Then, the
user may eventually observe the true solution yt.
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In the context of Intelligent Tutoring Systems, a teacher can aim to teach
the human learner a grammar rule by showing a sequence of examples. At each
step, the teacher suggests a problem (xt) and the user suggests a corresponding
solution (ŷt). In this example, the teacher observes directly the estimated solu-
tion (ωt = yt). However, other more sophisticated applications require a strict
distinction between ωt and yt. For instance, in a medical context [9], a case can
be given by the medical observations of a patient (xt) and the medical diagnosis
(yt). However, based on their diagnosis, a physician will take a decision related
to the suitable prescription (ωt). In an interactive system with an AI assistant,
only the prescription would be visible to the AI which should then be able to
infer the reasoning process of the physician, for their diagnosis and prescription.

A strong hypothesis made by our work is that the mapping xt �→ ŷt is
computed by the agent based on CBR. This hypothesis will be exploited further
in Sect. 4 when estimating the parameters of the decision-making.

Whereas the introduced framework focused only on one agent, the user, its
more general setting includes additionally the AI agent that may be responsible
for selecting the problems. One way to formalize the decision-making of such
an artificial agent in interaction with the human user is offered by the Partially
Observable Markov Decision Processes (POMDPs), which have been used in
various interaction applications such as teaching [12], dialogues [20] or human-
robot interaction [2]. A POMDP is defined as a tuple (S,A,R, T,Ω,O), where
S is the set of possible states, A the set of actions (in our context, the cases
to present), R a reward function (describing what the AI aims to achieve), T :
S × A × S → [0, 1] the state-transition (T (s1, a, s2) measures the probability of
transition from state s1 to state s2 by playing action a), Ω the set of observations
and O : S × A × Ω → [0, 1] the observation probability (O(s, a, ω) measures the
probability of observing ω when action a is played in state s).

In our context, the state s corresponds to the description of the parameters
of the user, which affect their own decision-making. With this POMDP formal-
ization, the user’s decision-making is described by the observation probability
function O, which assesses the probability of the user in a state s to take decision
ωt based on the problem xt selected by the AI.

In the following, we denote by s(t) the user state at time t. This description is
given as a vector containing all the parameters necessary for a representation of
the user. For a given i, we note s

(t)
i to refer to the i-th component of the vector,

and s
(t)
−i to designate the vector of all components sj for j �= i.

An important challenge when solving POMDPs is that the parameters of
the user cannot be directly observed by the AI, and some may evolve during
the interactive process (e.g. the content of the case base). These changes in the
state are described by the transition probability T . To alleviate this issue, it is
important for the system to be able to infer the value of the states in an online
manner, while keeping track of the uncertainty. The remainder of this paper will
propose a description of how to define the relevant states when the user bases
their decision on CBR, and how the parameters can be inferred in practice.
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3 Modeling the User as a Case-Based Reasoner

To guarantee an optimal interaction with the user, it is necessary that the def-
inition of the state yields a forward model of the user: Given s(t), it must be
possible to simulate the user future behavior. In this paper, we assume that the
user makes decisions following a CBR. This requires in particular the description
of how the user memorizes and reuses previous cases to solve new problems.

Table 1. Summary of parameters to infer by the teacher

Knowledge container Parameters to infer

Case base Content of the case base

Parameters of case retention

Parameters of the forgetting model

Domain knowledge Background knowledge of domain constraints

Similarity knowledge Similarity measure

Parameters of the similarity measure

Adaptation container Algorithm used for adaptation

Parameters of the algorithm

Rules (for a rule-based algorithm)

Using the definition of the knowledge containers for CBR [14], we propose to
split the user’s model into four components:

(1) The case base, denoted by CBU is the collection of memorized cases. It is
updated upon time by adding or removing elements from the collection. Dur-
ing an interaction, it is important to consider how new cases are added to the
case base, but also how cases are removed from the case base. In particular,
when considering human users, removing a case can be motivated by a con-
scious desire to update the case base, but also by unconscious phenomena
such as forgetting [11]. The AI agent must be able to have an estimation of
the content of the case base in order to choose the most appropriate actions.
This requires in practice to infer the parameters of the memorization and
forgetting phenomenon.

(2) The domain knowledge provides a set of rules dictated by the domain and
which constrain the search for a solution to the given problems. These rules
can be understood as the background knowledge that the user may or may
not have. When the teacher is able to identify potential domain knowledge,
it needs to infer whether the user does have it. In case the user does not, the
AI can adapt its actions to make such rules understandable, or, in practical
applications, the AI may provide explicit explanations [3].

(3) The similarity knowledge describes the factors used to assess the similarity
between cases, and is used in particular when retrieving cases from CBU to
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solve a new problem xt. For this knowledge container, the inference focuses
mostly on the similarity measure used by the learner. In case a finite number
of similarity measures can be used, the inference consists in finding out which
one is actually preferred by the learner. In more advanced cases, the inference
can also focus on parameters of the similarity measure such as the weight
coefficients [13].

(4) The adaptation container encompasses information that is used for adapting
the solution of a retrieved case (x, y) ∈ CBU to a new problem xt. In
a rule-based system, the adaptation container contains the rules used to
perform the adaptation. The inference of the adaptation container requires
then to infer which of these rules are used by the user. In a more general
case, the rules are replaced by general parameters and/or algorithms for the
adaptation.

A summary of the user model parameters to infer is provided in Table 1. In
the context of this paper, we will ignore the parameters related to case retention
and case forgetting and the inference techniques proposed in the next section
cannot apply directly to them. The inference of these parameters will have to
be studied in future works.

4 Inference of the CBR Parameters

4.1 General Principle

A common way to deal with the fact that the states in POMDPs are unobserved,
is to evaluate the states using a Bayesian belief update. It can be shown that,
in this case, the POMDP is equivalent to a belief-MDP. The idea is to estimate
the parameters in two steps. First, we estimate the posterior of the state s(t−1)

after interaction t − 1, using the information obtained at time t:

p(s(t−1)|xt, ωt) ∝ p(ωt|xt, s
(t−1))p(s(t−1)) (1)

where p(s(t−1)) is the prior over the state. The value taken as a prior for the next
interaction is obtained by applying the transition function T of the POMDP:

p(s(t)) = Ep(s(t−1)|xt,ωt)

[
T (s(t−1), (xt, yt), s(t))

]
(2)

Although this formulation is the soundest, it is difficult to use in practice
when inferring the parameters of a CBR agent, because of the very large dimen-
sion of the state space, which must contain all possible case bases. It is applicable
though when the case-base of the learner is known.

As a solution, we propose in the following to use marginal distributions over
each parameter independently instead of the full joint distribution. This simpli-
fication, which is used for computational reasons, yields a loss in terms of the
richness of potential correlations between parameters of the model. However,
depending on the problem, it is possible to consider some groups of variables
together to keep track of some correlations.
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When considering the marginals, we consider the update of each of the com-
ponents si of the state s. The belief update is then given by:

p(s(t−1)
i |xt, ωt) ∝ E

s
(t−1)
−i

[
p(ωt|xt, s

(t−1)
i , s

(t−1)
−i )

]
p(s(t−1)

i ) (3)

where the expected value over the components s
(t−1)
−i is computed based on

the probabilities p(s(t−1)
−i ). For simplicity purposes, we will write the terms

s
(t−1)
i , s

(t−1)
−i simply as s(t−1), which is technically correct but loses the intu-

ition that the term s
(t−1)
i corresponds to the quantity being updated and s

(t−1)
−i

to the variables of the expected value.
Since the observation is not directly produced by the CBR agent, we decom-

pose the likelihood p(ωt|xt, s
(t−1)) into two terms, accounting for (i) the result

ŷt of the CBR and (ii) how this result is used to yield observation ωt:

p
(
ωt|xt, s

(t−1)
)

=
∑

ŷ

p
(
ωt|xt, s

(t−1), CBR(xt, s
(t−1)) = ŷ

)
︸ ︷︷ ︸

choice of the response given the result of the CBR

p
(
CBR(xt, s

(t−1)) = ŷ
)

︸ ︷︷ ︸
result of the CBR

(4)

where the notation CBR(xt, s
(t−1)) designates the result of the CBR for prob-

lem xt with s(t−1) as parameters (including the content of the case base).

4.2 Inference of the Parameters for a Deterministic CBR

We consider as an illustration the specific case where the learner is a deterministic
CBR, i.e. that the retrieval and adaptation are both deterministic functions. In
addition, we assume that the learner’s output ωt is the result of the adaptation,
which implies that:

p
(
ωt|xt, s

(t−1), CBR(xt, s
(t−1)) = ŷ

)
= I(ωt = ŷ) (5)

where I(x) = 1 if x is true, and I(x) = 0 otherwise. In this context, it can be
shown that p

(
ωt|xt, s

(t−1)
)

= I
(
ωt = CBR(xt, s

(t−1))
)
, and eventually:

p(s(t−1)
i |xt, ωt) ∝ p

s
(t−1)
−i

(
ωt = CBR(xt, (s

(t−1)
i , s

(t−1)
−i )

)
p

(
s
(t−1)
i

)
(6)

The CBR process can be divided here into two main steps: the retrieval,
denoted by Ret(xt), which outputs the closest case(s) to xt, and the adaptation,
denoted by Ad(xt,R), which consists in adapting the retrieved cases R to solve
problem xt. It can then be observed that:

p
s
(t−1)
−i

(
ωt = CBR(xt, (s

(t−1)
i , s

(t−1)
−i )

)

=
∑

R⊂CBU

p
s
(t−1)
−i

(
ωt = Ad(xt,R)

∣∣∣s(t−1)
i

)
p

s
(t−1)
−i

(
Ret(xt) = R

∣∣∣s(t−1)
i

)
(7)
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We note that, in Eq. 7, the sum over all possible results of the retrieval will
be in practice reduced to those yielding a correct result during the adaptation
(otherwise, the probability that ωt = Ad(xt,R) is 0).

4.3 Probability of Retrieval for kNN

In the case where the retrieval is operated by a k Nearest Neighbor algorithm,
the probability p

s
(t−1)
−i

(Ret(xt) = R) can be evaluated as follows.
We first consider that the similarity metric and its parameters are fully

known. For simplicity and without loss of generality, we assume in the following
that the cases are ordered by decreasing similarity to x (in particular, (x1, y1)
is the most similar to x). In practice, this can be obtained using a permutation
σ reordering the cases. Then the probability that kNN(xt) outputs (i1, . . . , ik),
where i1 < . . . < ik, is given by:

p
(
kNN(xt) = (i1, . . . , ik)

)
=

∏
j∈(i1,...,ik)

p(λ(t)
j = 1)

ik∏
j=1

j �∈(i1,...,ik)

p(λ(t)
j = 0) (8)

where λ
(t)
i ∈ B indicate whether case (xi, yi) belongs to the user’s case base.

Note however that the λ
(t)
i are components of the vector s(t).

When there is uncertainty over the similarity metric and/or its parameters,
we can obtain the probability of retrieval by using the law of total probability
over these values. Note that the probability in Eq. 7 is computed over the vari-
ables s

(t−1)
−i only, variable s

(t−1)
i being fixed and corresponding to the variable

being updated. The computational complexity of computing this probability
under uncertainty depends on the number of similarity measures and param-
eters to consider. In particular, this operation requires additional attention in
continuous parameter spaces.

4.4 Discussion on the Inference Process

The Bayesian inference described in this section is very general and applicable
to any situation where the behaviour of the CBR system can be modelled. In
particular, we showed how Eq. 4 can be used to assess situations where the exact
output of the reasoning is not observed. In terms of implementation however, it
is noticeable that the presented techniques can quickly become computationally
very expensive, as soon as the number of parameters of the models increases.
The variable separation suggested in Eq. 3 goes into the direction of lowering the
dimension of the state space, but this dimension is obviously not the only cause of
complexity. For instance, Eq. 7 requires to sum over all possible retrieval results,
the number of which grows exponentially with the number of cases to retrieve.
In the experimental section, we will consider the simple case of 1 neighbor only,
in order to keep reasonable space exploration. For future works however, more
advanced inference and approximation techniques will be needed, in particular
Monte-Carlo techniques or likelihood-free inference.
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5 Application: Teaching Word Inflection

5.1 Presentation of the Application

As an illustrative example, we consider the application of teaching a grammar
rule to a learner. In order to teach a new grammatical concept in a foreign
language, a commonly used method is to present some examples to the learner, as
well as exercises during which the learner aims to solve a series of problems. The
purpose of the application considered here is to mimic this teaching procedure.

We focus on the simple case of word inflection, which is the transformation
of a word, called stem, into an alternative form, called inflection. Such transfor-
mations are typical of conjugation or declension. In the simplest case, a single
rule applies to all stems, but there exist multiple word classes with their specific
transformations, and the learner must be able to memorize all these transforma-
tions and to know when to apply them. As a typical example, the Institute for
the Languages of Finland identifies 51 different declension groups in the Finnish
language, which differ mostly in a change of radical. For instance, although the
genitive case is obtained by suffixing a -n to the radical, the formation of the
radical from the stem varies from one group to the other. We cite here a few
examples following the schema (Stem, Radical, Genitive case): (“kissa”, “kissa-”,
“kissan”), (“korpi”, “korve-”, “korven”), (“rakkaus”, “rakkaude-”, “rakkau-
den”), (“Sibelius”, “Sibeliukse-”, “Sibeliuksen”).

When considering this scenario, a case (x, y) is given by the stem (for instance
“kissa”) and the corresponding genitive form (here “kissan”). The goal of the
teacher, as described in Sect. 2, is then to propose an optimal sequence of cases
to the learner (which can be seen as exercises).

The learner model we propose is a CBR framework based on the notion of
Kolmogorov complexity [8], inspired by the work of Murena et al. (2020) [10] on
morphological analogies. Kolmogorov complexity [8] is a theoretical tool mea-
suring how complex the generation of a string is. Intuitively, the character string
“0000000000” is less complex than “0110111010” because it can be generated
by a simple program. More formally, the complexity of a binary string x ∈ B

∗,
denoted KM (x), is defined as the length of the shortest program, on a reference
Turing machine M , that outputs x.

This definition relies on the choice of a reference Turing machine M ; theo-
retical results show that this is not a real issue because of invariance properties,
and most applications, including the one of interest here, fix a simple machine
to make K(.) computable. For the case of analogies on words, Murena et al.
(2020) [10] introduce a simple description language based mostly on the con-
catenation of character strings. The programs allow the definition of functions
with variables, which can be used for instance to assess repetitions of patterns.
Although the choice of this language is a parameter in se, we consider it as fixed
and optimal. Inferring the optimal description language could be an interesting
and challenging future direction.
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5.2 Implementation of a Case-Based Reasoning Learner

We now propose a full description of the CBR learner we use in the context of
this application.

Case Base. The case base CB is a set of tuples (x, y), where x is the stem
and y the inflected form. We consider only finite case bases. We consider a
probabilistic retention, where a case is retained with a given probability (see
Sect. 5.3, Experiment 3). As stated before, we do not consider the inference of
the parameters of the case retention.

Domain Knowledge. The domain knowledge is given as a set of rules which
determine the validity of a solution and/or affect the adaptation. We consider
here the understanding h ∈ B of the vowel harmony rule in Finnish, which states
that the groups of vowels a/o/u and ä/ö/y cannot coexist in a word; according to
it, the solution of the analogical equation “maa:maalla::pää:x” will be corrected
from “päälla” into “päällä”.

Similarity Knowledge. The retrieval is highly dependent on a distance function
between existing cases and a new problem: d : X × Y × X. We identify three
main candidate functions, all based on complexity. The first candidate exploits
the idea that adaptation knowledge can play a role in the retrieval phase [15]:

d0(a : b, c) = min
d

K(a : b::c : d) − K(a : b) (9)

where K(a : b) removes the impact of the complexity of the source case. Distance
d1(a : b, c) is similar, but has K(a) as a regularizer. The third considered distance
measures how close the structures of a and c are: d1(a : b, c) = K(a::c) − K(a)

The retrieval phase is then implemented as a k-nearest neighbors procedure,
where the neighbors are defined according to the chosen distance function. The
domain knowledge is then given by two parameters: d ∈ {d0, d1, d2}, the chosen
distance function, and k, the number of neighbors, chosen to be equal to 1 in
this paper. The adoption of higher values of k will be explored in future work.

Adaptation Knowledge. The retrieved case {(a, b)} is reused for solving the new
problem c by solving the analogical equations a : b::c : x , using the algorithm
proposed in [10], which states that the solution x of the analogical equation
minimizes the complexity K(a : b::c : x). This algorithm is non-parametric.

Discussion. Altogether, these four knowledge containers fully define the learner’s
CBR model. We notice that the only free parameters considered in this applica-
tion are the understanding of vowel harmony (h ∈ B) and the distance function
used for the retrieval (d ∈ {d1, d2}). Other parameters (for instance k the num-
ber of neighbors) could be considered in more sophisticated models. In addition
to the inference of these parameters, the teacher must also infer the content of
the case base.



180 P.-A. Murena and M. Al-Ghossein

5.3 Empirical Evaluation

This section presents different experiments for evaluating the process of inference
of the CBR parameters, proposed in Sect. 4, in the context of the application of
teaching word inflections. We carried out three sets of experiments focusing on
different aspects of the inference.

In all of these experiments, the specific task considered is the one of teaching
to derive the inessive case of a Finnish word given its nominative case. The list
of Finnish words considered is extracted from the one provided by the Institute
for Languages in Finland (Kotus)1. This list of words also includes characteris-
tics of each word, in particular its group that dictates in part how the radical
is formed based on the nominative case. The inessive case was automatically
scraped from the Wiktionary dictionary2. In the experiments, we considered
only words belonging to the 48th type, which contains a large diversity of stem-
to-radical transformations.

The main idea of the experiments is to simulate the interaction between a
learner, modeled as a CBR agent with fixed parameters strue, and an AI agent
trying to infer these parameters, over a number of steps. The true CBR model is
used to simulate the user’s answers and the evaluation of the parameter inference
is based on how close the estimated parameters are from their true values. In
addition, we also evaluate the ability of the estimated CBR model to reproduce
the true behavior of the user. To measure this ability, we introduce a score metric
that is measured at each step t and defined as follows:

score(t) = Es(t)

⎡
⎣ 1

|CBtest|
∑

(x,y)∈CBtest

I

(
CBR(x, s(t)) = CBR(x, strue))

)
⎤
⎦

(10)
where CBtest is a test case base that is introduced for the sole purpose of eval-
uating the capacity of reproducing the user behavior on a new set of problems.

Experiment 1: Parameter Evaluation with a Fixed Case Base. The first
set of experiments focuses on the special case of parameter inference when the
case base of the user is fixed and does not evolve throughout the interaction.
This setting would remove any potential impact of the dynamic character of
parameters on the inference process as described by Eq. 2, which would itself be
the subject of Experiment 3.

Under this condition, we denote by CBU the fixed case base of the user that
is itself a subset of a larger (also fixed) case base, denoted by CB and containing
all possible cases that the user may have observed or learned. We set the size
of CBU to 30 and that of CB to 100. We consider an interaction session of 50
steps, during which the user does not retain any observation but only provides
answers to the problems based on its content and parameters. The experiment

1 www.kotus.fi. The link to the list of Finnish words: kaino.kotus.fi/sanat/nykysuomi.
2 www.wiktionary.org.

www.kotus.fi
http://kaino.kotus.fi/sanat/nykysuomi
www.wiktionary.org
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is run 20 times and we sample at each run a different CBU and CB from the
complete list of words described above. The parameters of the true user CBR
model are set as follows: h = 0 and d = d2. The different priors are taken as
uniform distributions over the set of related parameters.

(a) Estimation of the distance used for
retrieval.

(b) Estimation of the understanding of
vowel harmony.

(c) Evolution of the predicted score
compared to the real user.

(d) Average error in the prediction of
the word probabilities.

Fig. 1. Results of Experiment 1, considering the case where the user case base is fixed
and measuring the quality of parameter estimation.

As an indication in terms of computational time, running such an experiment
(including the 20 runs) takes up to one hour on a machine with one processor
Intel Core i5 2.3 GHz and 8G of RAM. Such an experiment also includes mea-
suring the score at each step, which is a costly operation, and does not involve
advanced optimization or parallelization of execution.

Results. Figure 1 shows the results obtained for this experiment. Figure 1a dis-
plays the evolution of the probability of each of the potential distance measures
over the number of steps. The estimation of the distance reaches the true value
after a few number of steps and the figure only shows the first few steps of the
interactive process, after which the values relatively stabilize. Following a similar
idea, Fig. 1b shows the estimation of the h parameter related to the understand-
ing of the vowel harmony concept. Its value drops over the number of steps
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until reaching zero, also showing that it is able to reach the desired value after
observing the user solutions. This shows that, even in the absence of a com-
plete certainty over the case base of the user, it remains possible to estimate the
parameters of the CBR model.

Figure 1c presents the score metric (Eq. 10) evaluated at each step of the
experiment on a fixed CBtest of size 100, sampled at the beginning of the exper-
iment from the complete list of words. The score increases over the number of
steps, starting from a score of 0 as no proper estimation of the user model has
been done at t = 0 and the AI agent cannot reproduce the user behavior. The
increase of the score metric throughout the experiment shows that the behavior
of the estimated user model gets closer to the one of the true user model, which
suggests that the estimation quality improves. This idea can also be derived from
Fig. 1d where the curve plotting the average difference between the estimated
probability of a word from the case base and its true probability, decreases over
time. However, and even after a large number of steps, this error does not reach
0: it can be observed that some cases in CB are given a probability of about 0.5.
This phenomenon can be explained by an impossibility to discriminate between
different words, which are seen by the inference as having a completely similar
role, and therefore as completely indiscernible. We discuss further this question
of indiscernibility in the next set of experiments.

Experiment 2: Impossibility of Differentiating Indiscernible States.
The parameter inference takes as evidence the answers given by the user to a
problem set. As mentioned above, it seems that some sets of parameters could
exhibit the same behavior (same answers) from the user’s side. In this set of
experiments, we aim to show that two equivalent states cannot be discernible by
the inference process.

Fig. 2. Results from Experiment 2. The
states s1 and s2 (blue and orange) yield a
similar user’s behaviour, and are therefore
indiscernible. (Color figure online)

We consider the two words “kaura”
and “käyrä”, having the inessive case
as “kaurassa” and “käyrässä” respec-
tively. We focus on the three follow-
ing states: s1 = (kaura ∈ CBU , käyrä
/∈ CBU , h = 1), s2 = (kaura /∈ CBU ,
käyrä ∈ CBU , h = 1), and s3 =
(kaura ∈ CBU , käyrä ∈ CBU , h = 0).
Since s1 and s2 both incorporate vowel
harmony, it can be verified that they
hold the same information in terms of
how to derive the inessive case from
the nominative case, and will therefore
provide similar answers to problems.

To compare the probability of each
of these states given the user answers,
we simulate the behavior of a user having a set of parameters equivalent to s1
on a series of 20 interactions (Note that similar results are obtained with s2).
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Results. Figure 2 shows the evolution of the probability of each state over the
number of steps. It can be seen from the plot that the two states s0 and s1 have
the same probability: It is not possible to differentiate between them or favor
one over the other only based on the user answers. The probability of state s3
decreases over time until reaching 0: if the user were in state s3, they would
retrieve any of the two cases from the case base and would adapt it to form a
potentially incorrect answer.

(a) Evolution of the estimated score
compared to the real user.

(b) Average error in the prediction of
the word probabilities.

Fig. 3. Results of Experiment 3: A learner acquires new data during the interaction
with a teacher. The teacher estimates the case base, with the following assumptions on
retention: (1) Retain with p = 0.2; (2) Retain with p = 0.6; (3) Retain with p = 0.95;
(4) retain with p = 0.5 when predicting the correct answer and with p = 0.8 otherwise.

Experiment 3: Parameter Inference for a Dynamic Case Base. We
complement the results provided in Experiment 1 by showing that an inference
is possible even in a context of a sequential interaction. We mimic a teaching
interaction between the AI and the user, during which the teacher displays a
sequence of problems from a case base CB of size 50. The learner proposes an
answer and observes the actual solution. The presented case is then retained
with a probability which depends on the learner’s answer: p = 0.8 when the
answer is incorrect, and p = 0.5 otherwise. To infer the learner’s CBR model, the
teacher exploits a fixed transition dynamics. We compare four possible dynamics:
three dynamics having a fixed probabilistic retention (with probabilities p = 0.2,
p = 0.6 and p = 0.95) and one having the same dynamics as the learner’s. The
experiments are led in the same conditions as those of Experiment 1 (20 runs,
fixed test base of 100 cases for the score).

Results. The experimental results show that the inference of the distance and
understanding of vowel harmony is unchanged when using the four transition
models. We thus omit to include the corresponding plots. The results presented in
Fig. 3 show however that the content of the inferred case base, and consequently
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the prediction score, are directly affected by the choice of the transition dynam-
ics. In particular, we observe that underestimating the probability of retention
(Teacher 1, in blue) causes lower prediction capabilities and more errors on the
case base. The teachers with larger probabilities of retention (Teachers 2 and 3,
in orange and green) have identical inference of the parameters, which is in par-
ticular better than the estimation based on the exact retention model (Teacher
4, in red). These observations highlight the importance of having a good estima-
tion of the transition dynamics. Although this aspect has been ignored in this
paper, it is a fundamental and unavoidable future work.

6 Conclusion

When interacting with other agents, be it other artificial agents or human users,
an AI must be able to understand its teammate to enhance the quality and effi-
ciency of the cooperation. In this paper, we discussed the possibility to use CBR
as a paradigm underlying the other agent’s behavior. Such a model is particu-
larly interesting when interacting with human users, since it directly incorporates
the fact that humans constantly memorize and reuse knowledge from previous
experiences. However, it introduces the important challenge of identifying the
parameters of such a CBR model based on the observed behavior.

Our first contribution is to clearly identify the dimensions of interest in a
CBR model that would need to be inferred (see Table 1). In particular, we dis-
cussed that a major but unavoidable challenge is to infer the content of the case
base, i.e. what the user knows. This is challenging because of the number of pos-
sible configurations for the case base. A second contribution is to demonstrate
the feasibility of such an operation: using basic probabilistic tools, we could
propose simple algorithms for the inference of the parameters of a CBR agent.
For the application of word declension, we succeeded in inferring the parameters
used by a CBR user for both the retrieval and the adaptation, when considering
fixed and dynamical case bases. However, we also showed that this has limi-
tations: the inference cannot differentiate between different states that exhibit
equivalent behaviours, and all the fixed parameters have to be chosen with care.
Future research is needed to be able to infer the parameters of case retention,
which none of the methods described in our paper can tackle. Furthermore, more
advanced techniques will have to be implemented to enable the inference of more
complicated models: in particular, likelihood-free inference techniques could be
valuable tools for approximating more realistic CBR models of human reasoning.
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