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46 rue Barrault, 75013 Paris, France,

last@telecom-paristech.fr
2 UMR MIA-Paris

AgroParisTech, INRA, Université Paris Saclay,
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Abstract. Analogical reasoning is a cognitively fundamental way of rea-
soning by comparing two pairs of elements. Several computational ap-
proaches are proposed to efficiently solve analogies: among them, a large
number of practical methods rely on either a parallelogram representa-
tion of the analogy or, equivalently, a model of proportional analogy. In
this paper, we propose to broaden this view by extending the parallel-
ogram representation to differential manifolds, hence spaces where the
notion of vectors does not exist. We show that, in this context, some
classical properties of analogies do not hold any longer. We illustrate our
considerations with two examples: analogies on a sphere and analogies
on probability distribution manifold.
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1 Introduction

Making analogies is considered by psychologists as a basic cognitive ability of
human beings [8], yet it remains a challenging task for artificial intelligence.
An analogy designates a situation where a parallel can be drawn between two
distinct and a priori unrelated domains. Computational models of analogical
reasoning have been developed either to map semantic domains [6], to solve ana-
logical problems on character strings, either structured [10] or unstructured [12],
or to characterize the quality of an analogy [5]. Apart from its major cognitive in-
terpretation, analogy plays an important role in case-based reasoning (CBR) [1]:
In order to solve a new case, CBR focuses on previously encountered cases and
aims to adapt solutions to the new problem. This adaptation process can be
interpreted as one-domain analogical reasoning (which means that the source
and target domains are identical).

A classical representation of analogies between vectors is the parallelogram
model, which states that the four elements of the analogy obey a regularity rule
close to a parallelogram in the representation space. For instance, the analogy
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“Paris is to France what Stockholm is to Sweden” may be interpreted in the form
of the equality “Paris - France + Sweden = Stockholm”. The first occurrences
of this representation date back to the earliest researches [17] and have been
resurrected in the recent years throughout the neural networks representation
skills, in particular in the Word2Vec paradigm [15], [14] or even in visual object
categorization [11]. The idea can be summed up as follows: Considering the
analogical equation A : B :: C : x with variable x, we assume that each element
can be represented as a point in a Euclidean space and that the solution x is
defined as the vector x = C +B −A. This representation is consistent with the
axioms of analogical proportion, as shown in section 2.4 of [13].

In this paper, we address the question of what happens when this representa-
tion is not true. Our main point is to loosen the structure of the representation
space and to consider analogies on Riemannian manifolds instead of analogies
in Euclidean spaces. A manifold can be understood intuitively as a space which
is almost a Euclidean space, in the sense that it is locally Euclidean. Because
of their curvature, the notion of vector does not exist in differential manifolds,
hence the parallelogram representation is not valid in them. A way to get around
that is to consider the notions of geodesic curve and parallel transport in Rie-
mannian manifolds which allow one to build parallelogram-like shapes. These
notions will be explained with more details in section 2.4. We will show that
the parallelogram construction is a particular case of the proposed procedure
for Euclidean manifolds, but that non-Euclidean structures do not verify the
classical axioms of analogy with this setting.

The remainder of this article is organized as follows. In section 2, we present
the general problem of analogies in non-Euclidean spaces. The problem is in-
troduced with the help of a trivial example (analogies on spheres), but a more
general explanation follows. In particular, we discuss the link between a found
analogical dissimilarity and manifold curvature. In section 3, we propose an ap-
plication of the proposed theory in the case of a very particular space: the space
of normal distributions. We will illustrate the developed ideas through a cou-
ple of simulations which show the impact of curvature. Lastly, we propose a
discussion on proportional analogy in differential manifolds.

2 Non-Euclidean Spaces and Non-Commutative
Analogies

2.1 Intuition: Analogies on the Sphere S2

In order to understand the ideas at play, we propose to consider the example of
analogies on a sphere. We denote by S2 the sphere defined as the subset of R3

defined as S2 = {x|x21+x22+x23 = 1}. The sphere can be shown to be a differential
manifold, and is obviously not Euclidean.

We consider three points A,B and C on the sphere and we try to solve the
analogical equation A : B :: C : x. In the context of this example, we will
consider three specific points, but the conclusions we will draw would be the
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same for any 3 points which are “not aligned” (in the sense that the third point
is not on the shortest path between the two others).

In order to solve this analogy, an intuitive idea would be to apply the same
procedure as described by the parallelogram rule. On Earth, it is possible to
use the parallelogram rule directly on a small scale: Since Earth is locally flat,
we can consider the floor as a vector space and apply a parallelogram rule by
walking from A to C by keeping in mind the direction to go to B from A.

The same procedure can be used when the three points are very distant. In
mathematical terms, we can formulate this procedure as a three steps method:

1. Direction finding: Estimation of the direction d to reach B from A follow-
ing a geodesic (ie. a path of minimal length).

2. Parallel transport: The direction vector is transported along the geodesic
from A to C.

3. Geodesic shooting: Point D is reached by following the transported direc-
tion d′ from point C.

(a) Step 1: Direction
finding

(b) Step 2: Parallel
transport

(c) Step 3: Geodesic
shooting

Fig. 1. Step by step resolution of the analogical equation A : B :: C : x on the sphere S2.
The solution found is x = B.

We consider for instance the case where B corresponds to the North pole and
A and C are located on the equator. For simplicity purpose, we also suppose that
the angle between the locations of A and C in the equator plane is π/2. The
solution to this analogy is shown in figure 1.

The steps can be intuitively explained as follows. The first step consists in
finding the shortest path from A to B: this path is characterized by the initial
direction, which is mathematically encoded by a vector in the tangent space. The
second step is of a different nature: The idea is to go along the shortest path
from A to C while maintaining the initial direction vector “in the same direction”
(the exact mathematical terminology will be precised in the next section). As
an illustration of this, the second step can be seen as walking from A to C while
maintaining one’s nose parallel from one position to the other. The shortest path
from A to C in our example is the equator and the initial direction is the vector
pointing toward the North pole: Hence, step 2 is similar to walking from A to
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C along the equator with the nose pointing toward the North pole at any time.
The third step consists in following the transported initial direction the same
time as done to join B from A in step 1.

Using this procedure, the solution of the analogical equation A : B :: C : x is
x = B. With the same procedure applied to the analogical equation A : C :: B :
x, we obtain the solution x = C, which is in contradiction with the exchange of
the means property of analogical proportion. However, we can easily verify that
the other properties are verified:

– Symmetry of the ‘as’ relation: C : B :: A : B and B : C :: A : C
– Determinism: the solution of A : A :: B : x is x = B

In the following, we will call a Non-commutative Analogy an analogy
which satisfies the symmetry of the ‘as’ relation and the determinism property,
but not necessarily the exchange of the means. An analogical proportion is a
more constrained case of a non-commutative analogy.

2.2 Reminder: Riemannian Geometry

In order to understand our method, we have to introduce some standard defini-
tions of Riemannian geometry. The proposed definitions are not entirely detailed:
we refer interested readers to standard references [3] for more details. For each
notion, we propose an intuitive and less rigorous explanation.

A topological manifold of dimension d is a connected paracompact Hausdorff
space for which every point has an open neighborhod U that is homeomorphic
to an open subset of Rd (such a homeomorphism is called a chart). A manifold
is called differentiable when the chart transitions are differentiable, which means
that the mapping from one chart representation to another is smooth. Intuitively,
a manifold can be seen as a space that is locally close a vector space.

A tangent vector ξx to a manifold M at point x can be defined as the
equivalence class of differentiable curves γ such that γ(0) = x modulo a first-
order contact condition between curves. It can be interpreted as a “direction”
from the point x (which only makes sense whenM is a subset of a vector space).
The set of all tangent vectors toM at x is denoted TxM and called tangent space
to M at x. The tangent space can be shown to have a vector space structure.
When the tangent spaces TxM are equipped with an inner-product gx which
varies smoothly from point to point, M is called a Riemannian manifold.

We define a connection ∇ as a mapping C∞(TM)×C∞(TM)→ C∞(TM)
satisfying three properties that are not detailed here: A connection can be seen
as a directional derivative of vector fields over the tangent space. It measures
the way a tangent vector is modified when moving from one point to another
in a given direction. A special connection, called the Levi-Civita connection, is
defined as an intrinsic property of the Riemannian manifold which depends on
its metric g only. This connection follows the “shape” of the manifold (here, the
word shape is understood in its intuitive meaning).
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These tools are used to define two notions that are fundamental in our inter-
pretation of non-commutative analogies: parallel transport and geodesics. Let
(M, g) be a Riemannian manifold and let γ : [0, 1] → M be a smooth curve
on M. The curve γ is called a geodesic if ∇γ̇ γ̇ = 0 (which means that γ is
auto-parallel, or keeps its tangent vector pointing “in the same direction” at any
point). This definition of a geodesic can be shown to correspond to a minimum
length curve between two points.

Fig. 2. Illustration of parallel transport on a differential manifolds. Vector ξ is trans-
ported along a curve γ. At any position t, we have P γ0,tξ ∈ Tγ(t)M.

A vector field X along γ is said to be parallel if ∇γ̇X = 0. One can define the
parallel transport as the application P γt0,t : Tγ(t0)M→ Tγ(t)M which maps any
vector of the tangent space ξ at point γ(t0) to the corresponding value at γ(t)
for the parallel vector field X such that X(γ(t0)) = ξ (figure 2.2). Intuitively,
the parallel transport along a curve keeps a tangent vector “pointing in the same
direction”.

2.3 Non-Commutative Analogies

Following the ideas developed in section 2.1, we propose the following definition
for a non-commutative analogical proportion:

Definition 1. A non-commutative analogy on a set X is a relation on X4 such
that, for every 4-uple (A,B,C,D) ∈ X4, the following properties are observed:

– Symmetry of the ‘as’ relation: R(A,B,C,D)⇔ R(C,D,A,B)
– Determinism: R(A,B,A, x)⇒ x = B

The second axiom (determinism) is slightly different from the original ana-
logical proportion. For analogical proportion, two possible implications could be
used to characterize determinism (the second characterization being the impli-
cation R(A,A,B, x) ⇒ x = B): One being true, the other is a consequence of
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the first. In non-commutative analogy, these two implications are not equivalent
anymore.

Removing the exchange of the means from the definition of an analogy ac-
tually makes sense. The symmetry of the means operates in the cross-domain
dimension of the analogy: Keeping this observation in mind, the symmetry of
the means seems to be a natural property. In practice, it can be observed that
the property is perceived as less natural in many examples. Consider for instance
the well-known analogy “The sun is to the planets as the nucleus is to the elec-
trons”. The symmetrized version of this analogy is “The sun is to the nucleus as
the planets are to the electrons”, which is less understandable than the original
analogy.

Moreover, many examples of common analogies can be found that do not
satisfy this property. For instance, the analogy “Cuba is to the USA as North
Korea is to China”, which is based on a comparison of politics and geographic
proximity, while the symmetrized analogy “Cuba is to North Korea as the USA
are to China” does not make sense. In this example, the status of the terms is
different: In one direction, the analogy is based on a political comparison, while
in the other direction it is based on a large-scale geographical comparison. The
nature of these two domains is not the same and does not have the same weight
in the analogy. This intuition of a directional weighting is coherent with the
model of non-euclidean manifolds.

2.4 Non-Commutative Analogies on Riemannian Manifolds

Let M be a Riemannian manifold and A,B,C,D ∈ M. We propose to find
a geometric condition on the four points such that A : B :: C : D defines a
non-commutative analogy.

Definition 2. The parallelogramoid algorithm Ap : M3 7→ M is defined as
follows. Consider (A,B,C) ∈ M3. Let γ1 : [0, 1]→M be a geodesic curve such
that γ1(0) = A and γ1(1) = B. Let ξ ∈ TAM such that ξ = γ̇1(0). Consider a
geodesic curve γ2 : [0, 1]→M such that γ2(0) = A and γ2(1) = C. Let γ3 be the
geodesic defined by γ3(0) = C and γ̇3(0) = P γ20,1ξ. Then Ap(A,B,C) = γ3(1).

Algorithm Ap corresponds to the procedure used in the case of a sphere. In
general, the described procedure is not unique: The unicity of tangent vector ξ
is not guaranteed. For instance, in the case of the sphere, if A and B correspond
to the North and South poles, there exists an infinite number of such vectors ξ.

Theorem 1. The relation R(A,B,C,D) � (Ap(A,B,C) = D) defines a non-
commutative analogy on M.

Proof. We would like to show that C : D :: A : B (symmetry axiom) is correct
with our construction. We use the tilde notation to describe the curves for this
analogy. For instance, γ̃1 is the geodesic from C to D, hence γ̃1 = γ3. Similarly,
γ̃2 = −γ2, where −γ designates the “opposite curve” (ie. γ̃2(s) = γ(1−s)). Since

parallel transport is invertible, ξ = P γ̃20,1P
γ2
0,1ξ. Thus, γ̃3 is the geodesic curve such

that γ̃3(0) = A and ˙̃γ3(0) = ξ and consequently γ̃3(1) = B.
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Fig. 3. parallelogramoid procedure on a Riemannian manifold.

In general, the relation does not define a proportional analogy since symmetry
of the means does not hold: Ap(A,B,C) 6= Ap(A,C,B). We will show that we
have equality only for a specific metric, called flat metric.

When M = Rn endowed with the canonical inner-product, the proposed
construction can be shown to be equivalent to the usual parallelogram rule,
since a geodesic is defined as a straight line and parallel transport over a straight
line is a simple translation of the original tangent vector. It can be shown that
the converse is almost true: The manifolds for which Ap designs an analogical
proportion have their Ricci curvature vanishing at any point.

Theorem 2. The only Riemannian metrics g such that the relation defined by
R(A,B,C,D) � (Ap(A,B,C) = D) is an analogical proportion for any A,B and
C are Ricci-flat.

Proof. In this demonstration, we will consider the equivalent problem where we
are given A ∈ M and ξ1, ξ2 ∈ TAM. With these notations, B = γ1(1) and
C = γ2(1) where γ1 is the geodesic drawn from A with initial vector ξ1 and γ2
is the geodesic drawn from A with initial vector ξ2. Considering an infinitesimal
parallelogramoid as defined in definition 1.1 of [16], where δ is the distance
between A and B, and ε the distance between A and C. Then the distance
between C and D = Ap(A,B,C) is equal to

d = δ

(
1− ε2

2
K(v, w) +O(ε3 + ε2δ)

)
where K(v, w) is the sectional curvature in directions (v, w). In the case of ana-
logical proportion, it can be verified that distance d must be equal to δ. Thus,
we have necessarily K(v, w) = 0 and, by construction of Ricci curvature Ric(v)
as the average value of K(v, w) when w runs over the unit sphere, we have the
result.
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Obviously, Euclidean spaces endowed with the canonical vector space are
Ricci-flat, but there exists other Ricci-flat spaces. A direct consequence of the-
orem 2 is that analogical proportions can be defined on some differential man-
ifolds. We will discuss in section 4 the general existence of such relations on
general manifolds.

3 Application: Analogies on Fisher Manifold

3.1 Fisher Manifold

By definition, a parametric family of probability distributions (pθ)θ has a nat-
ural structure of a differential manifold and, in this context, is called statistical
manifold. Unless in general a manifold is not associated to a notion of distance
or metric, information geometry states that there exists only one natural met-
ric for statistical manifolds [4]. This metric, called Fisher metric, is defined as
follows [7]:

gab(θ) =

∫
p(x|θ)∂ log p(x|θ)

∂θa
∂ log p(x|θ)

∂θb
dx (1)

It can be related to the variance of the relative difference between one distribu-
tion p(x|θ) and a neighbour p(x|θ + dθ). For a more complete introduction to
Fisher manifolds and more precise explanations on the nature of Fisher metric,
we refer the reader to [2].

Among all possible statistical manifolds, we focus on the set of normal dis-
tributions, denoted by N (n). A complete description of the geometric nature
of N (n) is given in [18]. As mentioned in this paper, a geodesic curve (µ(t), Σ(t))
on N (n) is described by the following geodesic equation:{

Σ̈ + µ̇µ̇T − Σ̇Σ−1Σ̇ = 0

µ̈− Σ̇Σ−1µ̇ = 0
(2)

In order to apply the parallelogrammoid algorithm and find non-commutative
analogies on N (n), a fundamental issue has to be overcome. As explained in the
reminder on Riemannian geometry, there exists two equivalent definitions of
geodesic curves:

1. A geodesic can be interpreted as a curve of shortest length between two
points. It is described by two points (A,B).

2. A geodesic can be interpreted as an auto-parallel curve, hence a curve gen-
erated by the parallel transport of its celerity. It is described by the initial
state: the initial position A ∈M and the initial celerity ξ ∈ TAM.

These two definitions are equivalent but switching from the one to the other is
a complex task in general. The second definition offers a simple computational
model for geodesic shooting, since it corresponds to integrating a differential
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equation (equation 2 in our case), but using it to find a geodesic between two
points requires to find initial celerity ξ.

In the scope of this paper, we consider the algorithm for minimal geodesic
on N (n) proposed by [9]. The proposed algorithm is based on the simple idea to
shoot a geodesic using initial celerity ξ using equation 2 and to update ξ based
on the euclidean difference between the endpoint of the integrated curve and the
actual expected endpoint. The algorithm is empirically shown to converge for
lower dimensions (n = 2 or n = 3).

3.2 Experimental Results

We present the results of the parallelogrammoid procedures Ap(A,B,C) an
Ap(A,C,B) obtained for various bidimensional multinormal distributions. We
use the classical representation of the multivariate normal distributions by the
isocontour of its covariance matrix, centered at the mean of the distribution.
The results we display are presented as follows:

– In black: Intermediate points in the trajectories γ1, γ2 and γ3.
– In blue: Normal distribution A.
– In green: Normal distribution B.
– In cyan: Normal distribution C.
– In red: Normal distribution D1 = Ap(A,B,C).
– In magenta: Normal distribution D2 = Ap(A,C,B).

Case 1: Fixed covariance matrix
For the first case, we fix µA = (0, 0), µB = (1, 1), µC = (0, 1) and Σ1 =

ΣB = ΣC =

(
1 0
0 .1

)
.

The space of normal distributions with fixed covariance matrix is euclidean,
which implies that algorithm Ap is equivalent to the parallelogram rule under
these conditions and that the defined relation is an analogical proportion. We
observe on figure 4 that the trajectories of means in the space correspond to a
parallelogram and that the two solutions are identical.

Case 2: Fixed mean in source domain, fixed covariance from source
to target

For the second case, we fix µA = µB = (0, 0), µC = (0, 2) and, for covariance

matrices, ΣA = ΣC =

(
1 0
0 .1

)
and ΣB =

(
.1 0
0 1

)
.

With these parameters, we observe that the two results are different (fig-
ure 5). The result of Ap(A,B,C) corresponds to the intuition that D will have
the same mean as C and the same covariance change as B compared to A. How-
ever, for Ap(A,C,B), the results are non-intuitive: the mean of distribution D is
different from the mean of C. It can be explained by the fact that the trajectory
varies both in µ and Σ. The geometric properties of information require that
these two dimensions are related together and that the change in µ depends on
the change in Σ.



10 Opening the Parallelogram: Considerations on Non-Euclidean Analogies

Fig. 4. Results for case 1 (fixed covariance matrix setting)

Fig. 5. Results for case 2 (fixed mean in source, fixed covariance from source to target)

Case 3: Symmetric distributions

For the third case, we fix µA = (0, 0), µB = (1, 0) and µC = (0, 1), and, for

covariance matrices, ΣB = ΣC =

(
1 −.5
−.5 .5

)
and ΣA =

(
1 .5
.5 .5

)
. We notice on

figure 6 that the trajectory leads to a distributions with “flat” covariance matrix
(with one large and one very small eigenvalue). No real intuitive interpretation
can be given of the observed trajectory (which shows that information geometry
cannot explain shape deformations, here ellipse deformations, as expected by
human beings).

Case 4: Slight perturbation

For the third case, we fix µA = (0, 0), µB = (1, 0) and µC = (0, 1), and,

for covariance matrices, ΣA =

(
1 .5
.5 .5

)
, ΣB =

(
1 −.5
−.5 .5

)
and ΣC =

(
1 .6
.6 .6

)
.

Covariance matrix ΣC is slightly different from Σ1. If they were equal, the par-
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Fig. 6. Results for case 3 (symmetric)

allelogramoid would be closed. However, the slight modification introduces a
perturbation large enough to make Ap(A,B,C) 6= Ap(A,C,B) (figure 7. Such
artifacts could introduce larger errors in case the distributions are not know with
good precision (for instance if they were estimated from data).

Fig. 7. Results for case 4 (slight perturbation)

4 Proportional Analogies on Manifolds

In previous sections, we have shown that the intuition of what an analogy can
be in a differential manifold leads to a less constrained definition of analogies
than the definition of proportional analogy. However, at this point of the pa-
per, the existence of proportional analogies on a manifold M remains an open
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question. The purpose of this section is to discuss the construction of analogical
proportions on a manifold.

Let M be a differential manifold. Our purpose is to design an algorithm to
build analogical proportions. We define an algorithm as a functionA :M3 7→ M.

Definition 3. An algorithm A : M3 7→ M is said to design an analogical
proportion on M if, for all (A,B,C) ∈ M3, the relation R(A,B,C,D) � (D =
A(A,B,C)) satisfies the axioms of analogical proportion.

Definition 3 can be seen as a reverse way to define solutions of analogical
equations. If a relation R is an analogical proportion over M designed by al-
gorithm A, then x = A(a, b, c) is the unique solution of equation R(a, b, c, x)
where x is the variable.

The following proposition offers an alternative characterization of proportion-
designing algorithms based on global characteristics.

Proposition 1. Algorithm A designs an analogical proportion if and only if the
following three conditions hold true for any (A,B,C) ∈M3:

1. A(A,B,A) = B or A(A,A,B) = B
2. A(A,B,C) = A(A,C,B)
3. B = A(C,A(A,B,C), A)

Proof. The proof is a direct consequence of the axioms of analogical proportion.

In the case where M is a vector space, it can be verified easily that the
parallelogram rule algorithm A(A,B,C) = C + B − A designs an analogical
proportion. However, it is not the only algorithm to satisfy this property. In
proposition 2, we exhibit a parametered class of analogical proportion designing
algorithms.

Proposition 2. IfM is a vector space and f :M 7→M is a bijective mapping,
then algorithm Af defined by Af (A,B,C) = f−1(f(C) + f(B)− f(A)) designs
analogical proportion.

It can be noticed that, when f is linear, algorithm Af corresponds to the
parallelogram rule. For other values of f , algorithm Af can define proportions
of another nature. An interesting perspective would be to study if these non-
trivial proportions on a vector space can be related analogical proportions on a
manifold.

The result of proposition 2 can be generalized to any spaces:

Proposition 3. Consider E and F two isomorphic sets with f : E 7→ F a cor-
responding isomorphism. If AF : F 3 7→ F designs an analogical proportion on F
then algorithm AE : E3 7→ E defined by AE(a, b, c) = f−1 (AF (f(a), f(b), f(c)))
designs an analogical proportion on E.

Based on this result, it can be shown that analogical proportion defining
algorithms exist on any manifold.
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Theorem 3. For any manifold M, there exists an algorithm that defines ana-
logical proportion on M.

Proof. Consider a finite atlas A = {(Uα, ψα)|α ∈ {1, . . . ,m}}. Such an atlas ex-
ists for m large enough. In this definition, Uα corresponds to a domain on M
and ψα : Uα 7→ Bn(0, 1) is an homeomorphism from Uα onto the unitary
ball Bn(0, 1) on Rn (where n is the dimension of M). If we denote Ek = {x ∈
Rn|2(k − 1) < x1 < 2(k + 1)}, one can equivalently extend the mapping ψk to
be homeomorphisms between Uk and Ek (figure 8).

Fig. 8. Construction of a bijective mapping between n-dimensional manifold M and
an open subset of Rn. For simplicity purpose, the subsets Uk are presented as disjoint,
which they are not.

We build a function ψ :M 7→
⋂m
k=1Ek as follows: If x ∈ Uk\

⋂
i>k Ui, then

ψ(x) = ψk(x) + ek where ek is the vector with first component equal to 2k and
all other components equal to 0. This function defines a bijective mapping. Since⋂m
k=1Ek is an open subset of Rn, there exists a bijection

⋂m
k=1Ek 7→ Rn. The

theorem follows from proposition 3 and the fact that ARn 6= ∅.

Theorem 3 is fundamental since it states the existence of analogical pro-
portions on manifolds, which seems to invalidate the intuitions exposed with
the parallelogrammoid method. However, the intuitive “validity” of the existing
analogies (and in particular of the analogies produced by the proof) is not clear
since they appear to be highly irregular since they are not continuous.

These observations point out a deficiency in the definition of analogical pro-
portion, which comes from its main applicative domains. The definitions of
analogical proportion were first designed for applications in character-string
domains [12] and were discussed for applications in other non-continuous do-
mains [13] such as analogies between finite sets. Among real continuous applica-
tions (hence applications which do not involve a discretization of the continuous
space), most are based on parallelogram rule on a vector space. When defining
analogical proportions on continuous spaces, a continuity property is also desir-
able, which is not induced by the definition of analogical proportion. Intuitively,
this property makes sense: If two analogical problems are close, it is expected
that their solutions will be close as well.
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The question of the existence of analogical proportion defining algorithms
that are also continuous (in the sense of a function M3 7→ M) remains open at
this step. It is impossible to adapt the proof of theorem 3 in order to make the
mapping continuous. More generally, the result cannot be directly adapted from
proposition 3.

5 Conclusion

In this paper, we proposed an extension of the well-known naive parallelogram
representation of proportional analogies. We have shown that, when the space
is curved (or more precisely when it is a differential manifold), the equality
D = C + B − A does not make any sense and more subtle descriptions have to
be chosen. The solution we proposed is based on geodesic shooting and parallel
transport, and corresponds to the parallelogram representation when the mani-
fold is euclidean. However, the introduction of the curvature is inconsistent with
one of the axioms of proportional analogy. However, this change of perspective
is necessary since it is required by specific situations and the lost properties did
not make sense from a cognitive point of view. We illustrated our proposition on
two simple manifolds: the sphere and Fisher manifold for normal distributions.
In the future, tests on more complex manifolds would be of interest, especially
for analogies between objects which belong naturally to non-euclidean spaces. A
study of feature relatedness in concept spaces and how such correlations induce
a curve of the space is also directly connected to potential applications.

In addition, a work has to be done in the direction of finding relations of ana-
logical proportions in manifolds. Until now, researches have focused mainly on
more simple sets (boolean analogies, analogies between sets, character strings,
or vectors) but some structures cannot be represented by simple objects and will
require defining proportional analogies on manifolds, for instance shape spaces.
We have shown the existence of analogical proportions in manifolds, but could
not show the existence of continuous analogical proportions, which would be a
fundamental property of a good intuitive proportion. The existence of contin-
uous analogies remains an open question that will have to be solved in future
researches.
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