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Abstract. Analogical reasoning is a central problem both for human
cognition and for artificial learning. Many aspects of this problem re-
main unsolved, though, and analogical reasoning is still a difficult task
for machines. In this paper, we consider the problem of analogical rea-
soning and assume that the relevance of a solution can be measured
by the complexity of the analogy. This hypothesis is tested in a basic
alphanumeric micro-world. In order to compute complexity, we present
specifications for a prototype language used to describe analogies. A few
elementary operators for this language are exposed, and their complex-
ity is discussed both from a theoretical and practical point of view. We
expose several alternative definitions of relevance in analogical reasoning
and show how they are related to complexity.
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1 Introduction

Analogical reasoning is a fundamental ability of human mind which consists in
establishing a mapping between two domains based on common representations.
Analogies are involved in particular in the use of metaphors, humour [11] and
in scientific research [4]. It is also the key ability measured in IQ tests [16].
Although it is perceived as a very basic and natural task by human beings,
transferring this ability to computers remains a challenging task, whether for
detecting, understanding, evaluating or producing analogies. A typical analogy
can be expressed as follows: ‘b’ is to ‘a’ what ‘d’ is to ‘c’, which will be written a
: b :: c : d. This problem involves two domains, called source domain and target
domain. The analogy is based on the pairing of the transformation a : b in the
source domain and the transformation c : d in the target domain. Several models
have been developed so far to cope with analogical reasoning, but they are based
on complex modelings and huge computing power, which is not plausible from
a cognitive point of view. For example, softwares such as Copycat [8] and its
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successor Metacat [14] explore the possible mappings between the two involved
problems (source and target problems).

The question of relevance is central in analogical reasoning in the sense that
it defines the quality of the considered mappings. Because infinitely-many com-
mon properties can be found between two objects, a relevance measure has to be
found to disqualify properties of little interest [6]. Moreover, several criteria may
be considered to measure relevance of a mapping: the number of common proper-
ties [18], the abstraction level of the shared properties, structural alignment [5],
pragmatic centrality [10] or representational distortion [7].

Inspired by some previous works [3], [15], [1], we consider in this paper that
relevance in analogical reasoning can be measured by description length and
Kolmogorov complexity (which is its formal equivalent). We propose the prin-
ciples for a new generative language which can be used to describe analogical
problems. Although it is presented in the domain of Hofstadter’s analogies (i.e.
analogical problems in alphanumerical domain), its principles are general and
could be used in several other contexts. The idea of such a language is similar to
the idea developed by [17] in the context of sequence continuation. This language
offers a strict general framework and offers a cognitively plausible and generative
description of analogies.

2 Representation bias for Hofstadter’s micro-world

2.1 Presentation of Hofstadter’s problem and its variant

In order to study general properties of proportional analogy, Douglas Hofstadter
introduced a micro-world made up of letter-strings [9]. The choice of such a
micro-world is justified by its simplicity and the wide variety of typical analogical
problems it covers. The base domain of Hofstadter’s micro-world is the alphabet,
in which letters are considered as Platonic objects, hence as abstract entities.
Elementary universal concepts are defined relatively to strings of letters, such as
first, last, successor and predecessor. To this domain is added a base of semantic
constructs defined by Hofstadter: copy-groups, successor-groups and predecessor-
groups [8]. The typical problem considered by Hofstadter in this micro-world is
the

We consider a slightly modified version of Hofstadter’s problem. Our modi-
fications correspond to an extension of the micro-world.

First, we consider an additional base alphabet: the number alphabet. This
alphabet adds an infinite number of elements to the problem but does not make
the base problem more complicated. Furthermore, this addition encourages the
use of user-defined base structures and raises the issue of transfer between differ-
ent domains. In particular, the analogy equation ABC : ABD :: 123 : x seems
very basic for a human mind while it corresponds to a change of representation
from the world of letters to the world of numbers. Besides, the use of other base
alphabets can be justified by some prior knowledge of the users: for instance, it
can be thought that the problem ABC : ABD :: QWE : x will admit a simple
solution for any system familiar with the English keyboard layout.
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Secondly, we consider a mapping from numbers to any base alphabet. This
operation was discarded by Hofstadter’s rules but seems important to us. The
problem ABC : ABD :: ABBCCC : x relies on a such a mapping: the string
ABBCCC is naturally described as “n-th letter of the alphabet repeated n times
for n ∈ {1, 2, 3}”.

The third major difference between our approach and Hofstadter’s original
works lies in the consideration of descriptive groups. While Hofstadter’s ap-
proach is merely descriptive, we adopt a generative formalism in which the way
strings were formed is taken into account. The static description of copy-groups,
successor-groups or predecessor-groups is replaced in our framework by methods
such as copy, succession or predecession.

2.2 Complexity-based description

In this paper, we will focus on the resolution of analogy equations of the form A :
B :: C : x where x is unknown. We submit that the solution of such an equation
is given by x = arg minx C(A,B,C,x) where the function C corresponds to the
(minimum) description length for the four terms. Such a hypothesis is related to
the well-known philosophical principle of Occam’s razor stating the best choice
is the shortest.

A strict definition for the description length is offered by algorithmic theory of
information with Kolmogorov complexity [13]. Basically, the complexity CM(x)
of a string x corresponds to the length (in bits) of the shortest program on a
Universal Turing Machine (UTM) M that produces x.

In practice, this quantity is not calculable, hence only upper-bounds are used
to estimate the complexity of an object. An upper-bound corresponds to a re-
stricted choice of programs or equivalently to the choice of a limited Turing
Machine. In this paper, we consider a particular machine by defining an elemen-
tary language. The language we develop is an ad hoc construction encoding a
theory of the domain of interest.

We do not consider here prefix codes, ie. decodable codes in which no code
word can be the prefix of another code word. To cope with decoding, we consider
that the code is space-delimited, which means that costless delimiters are present
in it. This idea is in use in the Morse code for example. Morse code encodes letters
by sequences of dashes and dots (ie. with a binary alphabet). A full word is given
by a succession of letters separated by short breaks. These breaks are not part of
the Morse code but are used to indicate the transition from one letter to another.
In such contexts, the delimiters are supposed to be processed by the physical
layer of the system, hence to ensure a uniquely decodable code while having no
influence on complexity.

2.3 A generative language

Based on the specifications listed above, we develop a prototype language de-
signed to produce and solve analogies. We present here the global characteristics
of our language.
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As mentioned, a major difference between our perspective and Hofstadter’s
works is the generative point of view. Largely inspired by Leyton’s theory of
shapes [12], we consider a description of the process generating analogies rather
than a description of the analogies themselves. Any string will result from a
transformation of the base alphabet: for instance, ABCDE is perceived as the
sequence of the first five letters in the alphabet and ZYX as the sequence of the
first three letters in the reversed alphabet.

In order to integrate this sequential transformation of an original string, we
consider that the machine has access to a one-dimensional discrete tape. At each
time step, the machine writes on this tape or modifies the previously written
string. Thus, the base operation consists in copying the alphabet onto the tape.
Thus, the generative procedure consists in a sequence of operations read from
left to right and separated by commas. The operations are applied one by one
and refer to understandable manipulations. Even if any operation may be incor-
porated to the language, we will consider here only a restricted set of predefined
transformations, called operators {O1,O2, . . . }. The complexity of an operator
is independent of the operation it performs. An upper bound of this complexity
is the rank of the operator in the list of operators. For instance, the complexity
of operator O1 is equal to 0, no matter how complex the corresponding operation
actually is.

Besides, the instruction next_block is used to move to the next term in the
analogy definition. For the analogy A : B :: C : D, the order of the blocks is
A, B, C and D.

The core of the language is the use of a triple memory: a long-term domain
memory, a long-term operator memory and a short-term memory. A string or a
new operator can be put into short-term memory by means of the instruction
let. The short-term memory can be accessed with the key instruction mem.

More precise information on the exact grammar chosen for the language can
be found as supplementary material on the authors’ webpage.

2.4 Basic operators

The list of operators available for the language determines the bias of the ma-
chine. The more operators are given to the system, the more sophisticated the
obtained expressions can be.

The most basic set of programs is empty: it corresponds to a system capable
of giving letters one by one only. Such a system is sufficient in some contexts.
Consider for example the real problem of learning declension in a language.
In order to learn a declension, students learn by heart a single example and
transfer the acquired knowledge to new words. This corresponds for instance to
the analogy rosa : rosam :: vita : vitam for a simple Latin declension. This
analogy is encoded by the following code:

let(‘r’,‘o’,‘s’,‘a’), let(‘v’,‘i’,‘t’,‘a’),

let(?, next_block, ?, ’m’),

mem, 0, mem, 2, next_block, mem, 0, mem, 1;
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This program has to be interpreted as follows: In the first line, the groups
‘rosa’ and ‘vita’ are put in short-term memory. The second line defines a new
operator which displays the argument, switches to the next block, displays the
argument again and finally adds the character ‘m’. The third line retrieves the
just-defined operation and applies it successively to the two words, also retrieved
from memory.

In order to build effective descriptions for more complex systems, additional
operators can be defined. A list of possible operators is given in table 1.

Name Description Example

copy Repeats the group a given num-
ber of times. Equivalent of Hofs-
tadter’s copy-group.

‘a’, copy, 4; outputs aaaa

sequence Outputs the sequence of the first
n elements of the group. Equiva-
lent of Hofstadter’s copy-group.

alphabet, sequence, 3; out-
puts abc

shift Shifts the subgroups of n posi-
tions.

alphabet, shift, 3; outputs
defg...yz

shift_circular Circular version of the shift op-
erator

alphabet, shift_circular, 3;

outputs defg...yzabc

reverse Reverses the order of elements in
a group.

alphabet,sequence,3,reverse;

outputs cba

find Searches all occurrences of a
group given as parameter.

‘a’,‘b’,‘a’,find,‘a’,copy,2;

outputs aabaa

find Selects last group ‘a’,‘b’,‘a’, last, copy, 2;

outputs abaa

Table 1. Example of operators used by the language.

2.5 Using memory

The strength of the proposed language lies in its use of a triple memory to access
elements of different nature: a long-term domain memory Md storing domain
descriptions (e.g. alphabets), a long-term operator description Mo storing sys-
tem procedures to modify objects, and a short-term memory storing temporary
elements. Managing memory is of major importance when it comes to producing
programs of minimal length.

The access to elements in long-term memories Md and Mo is hidden in
the language for simplicity purpose, but it cannot be ignored. The designation
of support alphabets (alphabet, numbers, utf8, qwerty-keyboard...), hence
of the domain, and the designation of operators (copy, sequence, find...) are
treated as proper nouns to encapsulate an access to an ordered memory. The
rank of entities in memory is a characteristics of the machine and cannot be
changed.
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The user is in charge of the management of short-term memory. Entities
(operators or strings) are stored in memory with the let meta-operator and
accessed with the mem meta-operator. For example, the instruction let(‘a’)

will store the generation of a but the string is not written on the band. It will be
written only when invoked from memory. The short-term memory is organized
as a stack (hence last-in first-out): the parameter given to the mem operator is
the depth of the element in the stack.

Using short-term memory is not compulsory to describe a string: the language
syntax does not prevent from repeating identical instructions. However, in a
context of finding a minimal description (which is the purpose of our framework),
using memory is an important way to pool identical entities.

3 Relevance of a solution

3.1 From language to code

The principles outlined in previous section form a simplified grammar for our
generative language. They are not sufficient yet to calculate the complexity of an
analogy. The missing step is the formation of a binary code from an instruction.

The basic idea we use to obtain an efficient code consists in using a positional
code in lists. This code associates element 0 to the blank symbol, 0 to element 1
and increments of 1 bit at for each element (0, 1, 00, 01, 10...). Using this code,
the complexity of the n-th element of a list is dlog2 ne.

The global description of the language is organized as a list of lists: a word is
designated by the path inside the sequence of lists. For instance, the code for the
character d corresponds to the code of domain memory (1), alphabet (0) and d

(01), hence 1,0,01. The code is not self-delimited: the delimiter is the comma
symbol and can delimit a blank symbol. For instance, the number 2 is encoded
by 1,,00. Because a language word corresponds necessarily to a tree leaf, the
code is uniquely decodable.

The complexity of an instruction is determined from the corresponding code.
We propose to consider that the complexity corresponds directly to the number
of bits required in the code. For instance, the complexity of the character 2 will
be the number of bits in 1,0,0, hence C(2) = 3. The same reasoning is applied
to any instruction, including complex instructions describing complete analogies.

A way to build a cognitively plausible language encoding would consist in
evaluating the ordering based on human experiments. Such experiments will have
to be made in future research.

3.2 Relevance of a description

Several acceptable instructions can generate a given string. For example, the
string abc can be produced either by alphabet, sequence, 3; (instruction 1)
or ‘a’,‘b’,‘c’; (instruction 2) or alphabet, sequence, 2, ‘c’; (instruc-
tion 3). These three instructions do not seem equally satisfying from a human
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point of view. We submit that the difference in terms of relevance can be quanti-
fied by their description length. Using a specific code description, the description
lengths for the three previous instructions are respectively DL1 = 8, DL2 = 10
and DL3 = 12. In this example, it is clear that the instruction with minimal de-
scription length corresponds to the most relevant description of the string. As a
first step of our reasoning, we state that the most relevant generative description
of a string is the description of minimal description length. An upper-bound for
the Kolmogorov complexity of a string is defined as the description length of
the most relevant instruction which outputs the string of interest. Despite the
huge restriction applied to a general UTM by the choice of our language, the
complexity remains non computable: its computation requires an exploration of
all instructions producing the string, hence of an infinite space. Several solutions
can be adopted in order to build the optimal program. First, greedy approaches
would impose a research bias by the mean of a locally optimal exploration of
the space of programs. Additionally to this guided exploration of the space of
programs, a resource-bounded research can be considered [2].

3.3 Relevance of a solution for an analogy equation

Using the version of Kolmogorov complexity obtained by our system as described
above, it is possible to apply the minimum complexity decision rule.

In order to evaluate the way human beings react to analogy problems, we
proposed an experiment with several Hofstadters analogy problems.

Participants were 68 (36 female), ages 16-72, from various social and educa-
tional backgrounds. Each participant was given a series of analogies. The series
were in the same order for all participants, and some questions were repeated
several times in the experiment. All analogies had in common the source trans-
formation ABC : ABD. The main results are presented in Table 2.

The results presented in Table 2 confirm that in most cases the most chosen
solution corresponds to a minimum of cognitive complexity. The complexity is
calculated here using our small language and the coding rules exposed earlier.
Its limits are visible with the two examples ABC : ABD :: 135 : x and
ABC : ABD :: 147 : x. In these examples, the language fails at describing the
progression of the sequence “two by two” (1-3-5-7) or “three by three” (1-4-7-10)
which would decrease the overall complexity.

However, despite the simplicity of the language used to calculate the com-
plexity, it is noticeable that the most frequent solution adopted by the users
corresponds a complexity drop. This property is not verified with only two prob-
lems: for the problem ABC : ABD :: 122333 : x, the large value of the
complexity in the most frequent case is due to the limitations of the language
which fails at providing a compact description of the complete analogy because
of a too rigid grammar. In the case of the analogy ABC : ABD :: XYZ : x,
adding the circularity constraint has a cost in the language, while it seems to be
a natural operation for human beings.

The experiment also reveals a major weakness of our modeling: The descrip-
tions provided by our language are static and do not depend on the environment.
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Problem Solution Propostion Complexity

IJK IJL 93% 37
IJD 2.9% 38

BCA BCB 49% 42
BDA 43% 46

AABABC AABABD 74% 33
AACABD 12% 46

IJKLM IJKLN 62% 40
IJLLM 15% 41

123 124 96% 27
123 3% 31

KJI KJJ 37% 43
LJI 32% 46

IJK IJL 93% 37
IJD 2.9% 38

135 136 63% 35
137 8.9% 37

BCD BCE 81% 35
BDE 5.9% 44

IJJKKK IJJLLL 40% 52
IJJKKL 25% 53

XYZ XYA 85% 40
IJD 4.4% 34

122333 122444 40% 56
122334 31% 49

RSSTTT RSSUUU 41% 54
RSSTTU 31% 55

IJJKKK IJJLLL 41% 52
IJD 28% 53

AABABC AABABD 72% 33
AACABD 12% 46

MRRJJJ MRRJJK 28% 64
MRRKKK 19% 65

147 148 69% 36
1410 10% 38

Table 2. Main results of the survey. For each problem, only the two main solutions
are presented, with their frequency and the corresponding complexity.
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On the contrary, the variations of the average answering time and the changes
in the answers (when a same problem is repeated at several places) indicates
clearly that having faced similar structures in the past helps in solving a new
analogy. Finally, the relative relevance of two solutions is not necessarily suffi-
cient to explain human preference in this matter, though. For instance, on the
first problem, a large majority of people choose the IJL answer despite the
small complexity difference. This possible divergence is related to research bi-
ases which are not taken into account in our approach. This effect is particularly
visible with the more difficult analogy equation ABC : ABD :: AABABC :
x. Very few humans notice the structure A-AB-ABC, hence the corresponding
solution x = AABABCD. However, the structure A-AB-ABC is perceived as
more relevant when presented.

We have shown that complexity offers a criterion to compare two given so-
lutions to an analogy equation. This sole property is not sufficient in practice
to obtain an analogy solver. Since the space of solutions is infinite, additional
hypotheses must be considered in order to restrict the exploration space.

4 Conclusion

In this paper, we proposed to interpret analogical reasoning as a complexity
minimization problem and to solve an analogy equation by taking the solution
minimizing total complexity. Our approach relies on a restricted Turing ma-
chine: we proposed basic rules defining a small language adapted to Hofstadter’s
analogies. The language has been chosen to be generative (hence consistent with
Leyton’s theory of shapes) and not self-delimited (which allows compression with
unspecified parameters). We gave general principles governing such a language.
The system is flexible in the choice of the operations that can be involved for
the description of an analogy. This language is associated to a code directly used
in the computation of complexity. We use this code to measure the relative rel-
evance of descriptions for a same string and the global relevance of a solution
to an analogy. We used this code to measure the complexity of several analogies
and noticed that the minimum complexity solution corresponds in most cases to
the most frequent solution given by human beings.

Although the considered case might seem restrictive, our approach applies on
a wider range of problems. Humans often justify their analogies with a seman-
tic description. We consider our developed language as such. Similar languages
can be developed for other analogies. Several issues remain open. A future re-
search would be to develop a system able to generate descriptions automatically,
hence to solve analogy equations automatically. The question of the performance
evaluation of an analogy solver remains open: our framework measures only the
relevance of a single solution. Some work has to be done to offer either a the-
oretical measure of the global quality for an analogy solver or an experimental
validation of its efficiency. Finally, a real investigation on an extension of this
language to other domains is needed in order to conclude on its actual general-
ization properties.
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